并排收集方程式和表格

并排收集方程式和表格

我怎样才能使表格和集合处于同一水平。有没有比 tabularx 更好的方法?

    \begin{tabularx}{\linewidth}{X|X}

    {\begin{gather*}
        C_{g|in} =C_{gn}+C_{gp}\\
        C_{int}=C_{outputnode}\\
        p=(C_{gate}/C_{inv})_{int}\\
        g=(C_{gate}/C_{inv})_{g}\\
        b=f/f_{on-path}\\
        H=BGF\\
        B=\prod_i b_i \tab
        G=\prod_i g_i\\
        F=C_L/C_{g,1}\\
        P=\sum_i p_i\\
        t_p=\sum_i tp_o(p_i+h_i/\gamma)
    \end{gather*}}

    &

    {\begin{tabular}{|l|l|l|}\hline
        Gate     & p          & g        \\\hline
        INV      & 1          & 1        \\
        NAND     & n          & (n+2)/3  \\
        NOR      & n          & (2n+1)/3 \\
        MUX      & 2n         & 2        \\
        XOR/XNOR & $n2^{n-1}$ & - \\\hline
    \end{tabular}}

\end{tabularx}

在此处输入图片描述

答案1

两个版本,具有不同的排列方式。

\documentclass{article}
\usepackage{amsmath,array}

\newcommand\tab{\quad}
\newcommand\tsub[1]{_{\textup{#1}}}

\begin{document}

\begin{center}
\hspace*{\fill}%
$\begin{gathered}
  C_{g|\mathrm{in}}=C_{gn}+C_{gp}\\
  C\tsub{int}=C\tsub{outputnode}\\
  p=(C\tsub{gate}/C\tsub{inv})\tsub{int}\\
  g=(C\tsub{gate}/C\tsub{inv})_{g}\\
  b=f/f\tsub{on-path}\\
  H=BGF\\
  B=\prod_i b_i \tab
  G=\prod_i g_i\\
  F=C_L/C_{g,1}\\
  P=\sum_i p_i\\
  t_p=\sum_i tp_o(p_i+h_i/\gamma)
\end{gathered}$%
\hspace{\fill}%
\vrule
\hspace{\fill}%
\begin{tabular}{|l|l|l|}
\hline
  Gate     & $p$        & $g$        \\
\hline
  INV      & $1$        & $1$        \\
  NAND     & $n$        & $(n+2)/3$  \\
  NOR      & $n$        & $(2n+1)/3$ \\
  MUX      & $2n$       & $2$        \\
  XOR/XNOR & $n2^{n-1}$ & - \\
\hline
\end{tabular}%
\hspace*{\fill}%

\end{center}

\begin{center}
\hspace*{\fill}%
$\begin{gathered}[t]
  C_{g|\mathrm{in}}=C_{gn}+C_{gp}\\
  C\tsub{int}=C\tsub{outputnode}\\
  p=(C\tsub{gate}/C\tsub{inv})\tsub{int}\\
  g=(C\tsub{gate}/C\tsub{inv})_{g}\\
  b=f/f\tsub{on-path}\\
  H=BGF\\
  B=\prod_i b_i \tab
  G=\prod_i g_i\\
  F=C_L/C_{g,1}\\
  P=\sum_i p_i\\
  t_p=\sum_i tp_o(p_i+h_i/\gamma)
\end{gathered}$%
\hspace{\fill}%
\vrule
\hspace{\fill}%
\begin{tabular}[t]{|l|l|l|}
\firsthline
  Gate     & $p$        & $g$        \\
\hline
  INV      & $1$        & $1$        \\
  NAND     & $n$        & $(n+2)/3$  \\
  NOR      & $n$        & $(2n+1)/3$ \\
  MUX      & $2n$       & $2$        \\
  XOR/XNOR & $n2^{n-1}$ & - \\
\hline
\end{tabular}%
\hspace*{\fill}%

\end{center}

\end{document}

抱歉,但我无法忍受直立的数学符号。

在此处输入图片描述

答案2

像这样?我改为 gather*删除gathered对 和使用\abovedisplayskip 的可选参数:[t]gatheredtabular

\documentclass[11pt]{article}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{lmodern}
\usepackage{mathtools,}
\usepackage{array,tabularx}

\begin{document}

\begin{tabularx}{\linewidth}{X| >{\centering\arraybackslash}X}
  $ \begin{gathered}[t]C_{g|in} =C_{gn}+C_{gp}\\
        C_{int}=C_{outputnode}\\
        p=(C_{gate}/C_{inv})_{int}\\
        g=(C_{gate}/C_{inv})_{g}\\
        b=f/f_{on-path}\\
        H=BGF\\
        B=\prod_i b_i \quad%\tab
        G=\prod_i g_i\\
        F=C_L/C_{g,1}\\
        P=\sum_i p_i\\
        t_p=\sum_i tp_o(p_i+h_i/\gamma)
    \end{gathered} $
    &
    \raisebox{0.7\baselineskip}{\begin{tabular}[t]{|l|l|l|}\hline
        Gate & p & g \\\hline
        INV & 1 & 1 \\
        NAND & n & (n+2)/3 \\
        NOR & n & (2n+1)/3 \\
        MUX & 2n & 2 \\
        XOR/XNOR & $n2^{n-1}$ & - \\\hline
    \end{tabular}}
\end{tabularx}

\end{document} 

在此处输入图片描述

答案3

\documentclass[11pt]{article}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{mathtools,}
\usepackage{array}
\begin{document}

\begin{tabular}{ r| l}
\arraycolsep=1.4pt  \def\arraystretch{1.5}
$\begin{array}[t]{@{} r l @{}}
  C_{g|in} &=C_{gn}+C_{gp}\\
  C_{int}  &=C_{outputnode}\\
        p  &=(C_{gate}/C_{inv})_{int}\\
        g  &=(C_{gate}/C_{inv})_{g}\\
        b  &=f/f_{on-path}\\
        H  &=BGF\\
        B  &=\prod_i b_i \quad G=\prod_i g_i\\
        F  &=C_L/C_{g,1}\\
        P  &=\sum_i p_i\\
        t_p&=\sum_i tp_o(p_i+h_i/\gamma)
\end{array}$ 
        &
\begin{tabular}[t]{|l|l|l|}\firsthline
    Gate & p & g \\\hline
    INV & 1 & 1 \\
    NAND & n & (n+2)/3 \\
    NOR & n & (2n+1)/3 \\
    MUX & 2n & 2 \\
    XOR/XNOR & $n2^{n-1}$ & - \\\hline
\end{tabular}
\end{tabular}

\end{document}

在此处输入图片描述

相关内容