1 张表中有 4 个表格

1 张表中有 4 个表格

我有四张桌子:

\clearpage

%Entropía de shift de bernoulli 
    \begin{table} [ht]
\centering
    \resizebox{10cm}{!}{
        \begin{tabular}{ | l | l | l | l | l | l | l | l | l | l | l |p{2cm} |}
        \hline
        \multicolumn{1}{|c|}{}&\multicolumn{10}{|c|}{Shift de Bernoulli}\\
        \hline
        $\beta$ & L = 1 & L = 2 & L = 3 & L = 4 & L = 5 & L = 6 & L = 7 & L = 8 & L = 9 & L = 10 \\ \hline
        1.50 & 1.000000 & 0.898050 & 0.827012 & 0.785424 & 0.747959 & 0.722424 & 0.704147 & 0.690229 & 0 & 0.670651 \\ \hline
    1.55 & 1.000000 & 0.916890 & 0.841441 & 0.801419 & 0.773649 & 0.755601 & 0.738271 & 0.725952 & 0.715557 & 0.707855 \\ \hline
    1.60 & 1.000000 & 0.920117 & 0.844872 & 0.806559 & 0.783581 & 0.767813 & 0.756117 & 0.747022 & 0.740176 & 0.734052 \\ \hline
        1.65 & 1.000000 & 0.947536 & 0.896107 & 0.870941 & 0.847927 & 0.832831 & 0.819907 & 0.808284 & 0 & 0.791273 \\ \hline
    1.70 & 1.000000 & 0.964277 & 0.926722 & 0.905377 & 0.880436 & 0.864285 & 0.851503 & 0.841719 & 0 & 0.826751 \\ \hline
    1.75 & 1.000000 & 0.974442 & 0.946442 & 0.925901 & 0.908685 & 0.894906 & 0.883084 & 0.873798 & 0 & 0.860708 \\ \hline
        1.80 & 1.000000 & 0.974673 & 0.954581 & 0.934637 & 0.921529 & 0.911290 & 0.903615 & 0.896809 & 0.891743 & 0.887328 \\ \hline
    1.85 & 1.000000 & 0.983592 & 0.969827 & 0.954652 & 0.944855 & 0.937378 & 0.930590 & 0.925633 & 0.921462 & 0.917790 \\ \hline
    1.90 & 1.000000 & 0.991403 & 0.983637 & 0.976293 & 0.969272 & 0.964119 & 0.959469 & 0.955404 & 0.952077 & 0.949164 \\ \hline
        1.95 & 1.000000 & 0.997152 & 0.994268 & 0.991385 & 0.988121 & 0.985305 & 0.982651 & 0.980670 & 0.978693 & 0.976881 \\ \hline
    \end{tabular}
            }
  \caption{Entropía de Shannon del Shift de Bernoulli para distintos valores de $\beta$}
  \label{t2}
    \end{table}

    %Entropía del mapa casa de campaña
    \begin{table} [ht]
\centering
    \resizebox{10cm}{!}{
        \begin{tabular}{ | l | l | l | l | l | l | l | l | l | l | l |p{2cm} |}
        \hline
        \multicolumn{1}{|c|}{}&\multicolumn{10}{|c|}{Mapa casa de campaña}\\
        \hline
        $\mu$ & L = 1 & L = 2 & L = 3 & L = 4 & L = 5 & L = 6 & L = 7 & L = 8 & L = 9 & L = 10 \\ \hline
        1.10 & 0.999993 & 0.719640 & 0.623817 & 0.574029 & 0.543667 & 0.520606 & 0.503077 & 0.487768 & 0.476277 & 0.466137 \\ \hline
    1.19 & 0.999998 & 0.817096 & 0.749261 & 0.707740 & 0.6776148 & 0.651696 & 0.634337 & 0.621131 & 0 & 0.603097 \\ \hline
    1.28 & 0.999999 & 0.879155 & 0.823397 & 0.779928 & 0.748377 & 0.724584 & 0.706202 & 0.693772 & 0 & 0.674838 \\ \hline
        1.37 & 0.999997 & 0.920656 & 0.869041 & 0.842761 & 0.824498 & 0.809629 & 0.797052 & 0.786884 & 0 & 0.773294 \\ \hline
    1.46 & 1.000000 & 0.949674 & 0.896665 & 0.860753 & 0.835422 & 0.817890 & 0.805291 & 0.795185 & 0.787030 & 0.781269 \\ \hline
    1.55 & 0.999994 & 0.969246 & 0.910175 & 0.876628 & 0.855609 & 0.841122 & 0.830476 & 0.822020 & 0.815750 & 0.810293 \\ \hline
        1.64 & 1.000000 & 0.982636 & 0.931041 & 0.902826 & 0.884917 & 0.871120 & 0.860587 & 0.852203 & 0 & 0.840969 \\ \hline
    1.73 & 1.000000 & 0.991316 & 0.971207 & 0.944120 & 0.928266 & 0.917097 & 0.909319 & 0.902637 & 0 & 0.893963 \\ \hline
    1.82 & 0.999999 & 0.996628 & 0.989237 & 0.978702 & 0.966802 & 0.958673 & 0.950962 & 0.945109 & 0 & 0.936640 \\ \hline
        1.9 & 1.000000 & 0.999062 & 0.997298 & 0.994353 & 0.989116 & 0.983875 & 0.979076 & 0.975790 & 0.972602 & 0.969625 \\ \hline
    \end{tabular}
            }
  \caption{Entropía de Shannon del mapa casa de campaña para distintos valores de $\mu$}
  \label{t3}
    \end{table}

    %Entropía del mapa Zigzag
    \begin{table} [ht]
\centering
    \resizebox{10cm}{!}{
        \begin{tabular}{ | l | l | l | l | l | l | l | l | l | l | l |p{2cm} |}
        \hline
        \multicolumn{1}{|c|}{}&\multicolumn{10}{|c|}{Mapa Zigzag}\\
        \hline
        $m$ & L = 1 & L = 2 & L = 3 & L = 4 & L = 5 & L = 6 & L = 7 & L = 8 & L = 9 & L = 10 \\ \hline
        2.10 & 1.000000 & 0.621975 & 0.493608 & 0.430285 & 0.390371 & 0.364907 & 0.345455 & 0.331640 & 0.319643 & 0.311410 \\ \hline
    2.20 & 0.999993 & 0.692496 & 0.586389 & 0.531991 & 0.498349 & 0.476484 & 0.460860 & 0.448248 & 0 & 0.431709 \\ \hline
    2.30 & 0.999985 & 0.745348 & 0.655012 & 0.603466 & 0.572939 & 0.552549 & 0.537519 & 0.527078 & 0 & 0.511684 \\ \hline
        2.40 & 0.999997 & 0.789124 & 0.708435 & 0.667615 & 0.642868 & 0.626497 & 0.613865 & 0.605284 & 0 & 0.592076 \\ \hline
    2.50 & 1.000000 & 0.841750 & 0.769194 & 0.731111 & 0.707382 & 0.692981 & 0.681624 & 0.673777 & 0 & 0.661527 \\ \hline
    2.60 & 0.999996 & 0.853234 & 0.782381 & 0.746404 & 0.724822 & 0.709969 & 0.699907 & 0.691703 & 0.685904 & 0.680688 \\ \hline
        2.70 & 1.000000 & 0.874111 & 0.803156 & 0.768423 & 0.746997 & 0.732891 & 0.722954 & 0.715642 & 0.709093 & 0.704861 \\ \hline
    2.80 & 0.999998 & 0.894217 & 0.849368 & 0.826559 & 0.810183 & 0.799699 & 0.791777 & 0.786453 & 0 & 0.777744 \\ \hline
    2.90 & 0.999995 & 0.928070 & 0.900126 & 0.881468 & 0.869825 & 0.862464 & 0.857310 & 0.853049 & 0.849870 & 0.847187 \\ \hline
        3.00 & 0.999990 & 0.958528 & 0.945275 & 0.938107 & 0.933917 & 0.931226 & 0.929398 & 0.927947 & 0.926684 & 0.925014 \\ \hline
    \end{tabular}
            }
  \caption{Entropía de Shannon del mapa Zigzag para distintos valores de $m$}
  \label{t4}
    \end{table}

        %Entropía del mapa logístico
    \begin{table} [ht]
\centering
    \resizebox{10cm}{!}{
        \begin{tabular}{ | l | l | l | l | l | l | l | l | l | l | l |p{2cm} |}
        \hline
        \multicolumn{1}{|c|}{}&\multicolumn{10}{|c|}{Mapa logístico (modificación de Borujeni)}\\
        \hline
        $r$ & L = 1 & L = 2 & L = 3 & L = 4 & L = 5 & L = 6 & L = 7 & L = 8 & L = 9 & L = 10 \\ \hline
        3.30 & 0.998147 & 0.887795 & 0.820539 & 0.776608 & 0.747807 & 0.726720 & 0.708385 & 0.691625 & 0.678369 & 0.667889 \\ \hline
    3.37 & 0.995705 & 0.906133 & 0.831168 & 0.779012 & 0.747166 & 0.725658 & 0.710373 & 0.698681 & 0.688970 & 0.680540 \\ \hline
    3.44 & 0.999987 & 0.954097 & 0.887078 & 0.848970 & 0.818482 & 0.797880 & 0.782519 & 0.770114 & 0 & 0.751224 \\ \hline
        3.51 & 0.998877 & 0.947287 & 0.883722 & 0.851011 & 0.830670 & 0.814424 & 0.803068 & 0.793974 & 0 & 0.780619 \\ \hline
    3.58 & 0.983685 & 0.950772 & 0.920883 & 0.892638 & 0.865254 & 0.839776 & 0.818336 & 0.797837 & 0.781078 & 0.767354 \\ \hline
    3.65 & 0.970236 & 0.937791 & 0.899248 & 0.864822 & 0.837346 & 0.812417 & 0.794843 & 0.781066 & 0 & 0.762424 \\ \hline
        3.72 & 0.972943 & 0.928751 & 0.901627 & 0.871162 & 0.847469 & 0.831195 & 0.819438 & 0.810785 & 0 & 0.797611 \\ \hline
    3.79 & 0.962974 & 0.946805 & 0.933305 & 0.917082 & 0.902282 & 0.888114 & 0.874177 & 0.861700 & 0.850661 & 0.840151 \\ \hline
    3.86 & 0.956858 & 0.932936 & 0.920314 & 0.909508 & 0.895300 & 0.882612 & 0.873679 & 0.865753 & 0.859670 & 0.854040 \\ \hline
        3.93 & 0.939195 & 0.925036 & 0.917891 & 0.911482 & 0.904774 & 0.896499 & 0.888855 & 0.882996 & 0 & 0.873361 \\ \hline
    \end{tabular}
            }
  \caption{Entropía de Shannon del mapa logístico (modificación de Borujeni) para distintos valores de $r$}
  \label{t5}
    \end{table}


    \clearpage

我试图将这 4 个表格放在 1 个工作表中,我使用 float 包,我想将每个表格放在另一个表格前面,我一直在寻找答案,但我发现了很多解决方案,比如使用 faketables 来欺骗 LaTex,其他一些使用 minipage 命令,以及使用矩阵。我是 LaTex 新手,所有这些解决方案对我来说都很复杂,我真的尝试过使用这些解决方案,但我只是遇到了很多错误。

起初,在我的报告中,LaTex 将 4 个表格分配到 1 张纸上,但当我开始写文本时,只得到了 3 个表格,我尝试调整大小,但事实并非如此,问题仍然存在。

这是我正在使用的格式:

\documentclass[10pt,onecolumn]{article}
\usepackage{graphicx}
\usepackage{lmodern}
\usepackage[T1]{fontenc}
\usepackage[spanish,,activeacute,es-lcroman,es-tabla]{babel}
\usepackage{mathtools}
\usepackage[latin1]{inputenc}
\usepackage{dcolumn}
\usepackage{float}
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{epstopdf}
\usepackage{subfig}
\usepackage{color}
\usepackage{pifont}
\usepackage{apacite}
\usepackage{authblk}
\usepackage{rotating}
\usepackage{verbatim}

\spanishdecimal{.}

%%% FOR SanDie
\setlength{\oddsidemargin}{-0.25in}
\setlength{\evensidemargin}{-0.25in}
%%\setlength{\unitlength}{1cm}
\setlength{\topmargin}{-0.25in}
%%\setlength{\topmargin}{-0.6in}
\setlength{\textwidth}{17.7cm}
%%\setlength{\textwidth}{6.70in}
\setlength{\textheight}{21.7cm}
\setlength{\columnsep}{0.25in}

\renewcommand\Authands{ and }

\begin{document}

%Entropía de shift de bernoulli 
    \begin{table} [ht]
\centering
    \resizebox{10cm}{!}{
        \begin{tabular}{ | l | l | l | l | l | l | l | l | l | l | l |p{2cm} |}
        \hline
        \multicolumn{1}{|c|}{}&\multicolumn{10}{|c|}{Shift de Bernoulli}\\
        \hline
        $\beta$ & L = 1 & L = 2 & L = 3 & L = 4 & L = 5 & L = 6 & L = 7 & L = 8 & L = 9 & L = 10 \\ \hline
        1.50 & 1.000000 & 0.898050 & 0.827012 & 0.785424 & 0.747959 & 0.722424 & 0.704147 & 0.690229 & 0 & 0.670651 \\ \hline
    1.55 & 1.000000 & 0.916890 & 0.841441 & 0.801419 & 0.773649 & 0.755601 & 0.738271 & 0.725952 & 0.715557 & 0.707855 \\ \hline
    1.60 & 1.000000 & 0.920117 & 0.844872 & 0.806559 & 0.783581 & 0.767813 & 0.756117 & 0.747022 & 0.740176 & 0.734052 \\ \hline
        1.65 & 1.000000 & 0.947536 & 0.896107 & 0.870941 & 0.847927 & 0.832831 & 0.819907 & 0.808284 & 0 & 0.791273 \\ \hline
    1.70 & 1.000000 & 0.964277 & 0.926722 & 0.905377 & 0.880436 & 0.864285 & 0.851503 & 0.841719 & 0 & 0.826751 \\ \hline
    1.75 & 1.000000 & 0.974442 & 0.946442 & 0.925901 & 0.908685 & 0.894906 & 0.883084 & 0.873798 & 0 & 0.860708 \\ \hline
        1.80 & 1.000000 & 0.974673 & 0.954581 & 0.934637 & 0.921529 & 0.911290 & 0.903615 & 0.896809 & 0.891743 & 0.887328 \\ \hline
    1.85 & 1.000000 & 0.983592 & 0.969827 & 0.954652 & 0.944855 & 0.937378 & 0.930590 & 0.925633 & 0.921462 & 0.917790 \\ \hline
    1.90 & 1.000000 & 0.991403 & 0.983637 & 0.976293 & 0.969272 & 0.964119 & 0.959469 & 0.955404 & 0.952077 & 0.949164 \\ \hline
        1.95 & 1.000000 & 0.997152 & 0.994268 & 0.991385 & 0.988121 & 0.985305 & 0.982651 & 0.980670 & 0.978693 & 0.976881 \\ \hline
    \end{tabular}
            }
  \caption{Entropía de Shannon del Shift de Bernoulli para distintos valores de $\beta$}
  \label{t2}
    \end{table}

    %Entropía del mapa casa de campaña
    \begin{table} [ht]
\centering
    \resizebox{10cm}{!}{
        \begin{tabular}{ | l | l | l | l | l | l | l | l | l | l | l |p{2cm} |}
        \hline
        \multicolumn{1}{|c|}{}&\multicolumn{10}{|c|}{Mapa casa de campaña}\\
        \hline
        $\mu$ & L = 1 & L = 2 & L = 3 & L = 4 & L = 5 & L = 6 & L = 7 & L = 8 & L = 9 & L = 10 \\ \hline
        1.10 & 0.999993 & 0.719640 & 0.623817 & 0.574029 & 0.543667 & 0.520606 & 0.503077 & 0.487768 & 0.476277 & 0.466137 \\ \hline
    1.19 & 0.999998 & 0.817096 & 0.749261 & 0.707740 & 0.6776148 & 0.651696 & 0.634337 & 0.621131 & 0 & 0.603097 \\ \hline
    1.28 & 0.999999 & 0.879155 & 0.823397 & 0.779928 & 0.748377 & 0.724584 & 0.706202 & 0.693772 & 0 & 0.674838 \\ \hline
        1.37 & 0.999997 & 0.920656 & 0.869041 & 0.842761 & 0.824498 & 0.809629 & 0.797052 & 0.786884 & 0 & 0.773294 \\ \hline
    1.46 & 1.000000 & 0.949674 & 0.896665 & 0.860753 & 0.835422 & 0.817890 & 0.805291 & 0.795185 & 0.787030 & 0.781269 \\ \hline
    1.55 & 0.999994 & 0.969246 & 0.910175 & 0.876628 & 0.855609 & 0.841122 & 0.830476 & 0.822020 & 0.815750 & 0.810293 \\ \hline
        1.64 & 1.000000 & 0.982636 & 0.931041 & 0.902826 & 0.884917 & 0.871120 & 0.860587 & 0.852203 & 0 & 0.840969 \\ \hline
    1.73 & 1.000000 & 0.991316 & 0.971207 & 0.944120 & 0.928266 & 0.917097 & 0.909319 & 0.902637 & 0 & 0.893963 \\ \hline
    1.82 & 0.999999 & 0.996628 & 0.989237 & 0.978702 & 0.966802 & 0.958673 & 0.950962 & 0.945109 & 0 & 0.936640 \\ \hline
        1.9 & 1.000000 & 0.999062 & 0.997298 & 0.994353 & 0.989116 & 0.983875 & 0.979076 & 0.975790 & 0.972602 & 0.969625 \\ \hline
    \end{tabular}
            }
  \caption{Entropía de Shannon del mapa casa de campaña para distintos valores de $\mu$}
  \label{t3}
    \end{table}

    %Entropía del mapa Zigzag
    \begin{table} [ht]
\centering
    \resizebox{10cm}{!}{
        \begin{tabular}{ | l | l | l | l | l | l | l | l | l | l | l |p{2cm} |}
        \hline
        \multicolumn{1}{|c|}{}&\multicolumn{10}{|c|}{Mapa Zigzag}\\
        \hline
        $m$ & L = 1 & L = 2 & L = 3 & L = 4 & L = 5 & L = 6 & L = 7 & L = 8 & L = 9 & L = 10 \\ \hline
        2.10 & 1.000000 & 0.621975 & 0.493608 & 0.430285 & 0.390371 & 0.364907 & 0.345455 & 0.331640 & 0.319643 & 0.311410 \\ \hline
    2.20 & 0.999993 & 0.692496 & 0.586389 & 0.531991 & 0.498349 & 0.476484 & 0.460860 & 0.448248 & 0 & 0.431709 \\ \hline
    2.30 & 0.999985 & 0.745348 & 0.655012 & 0.603466 & 0.572939 & 0.552549 & 0.537519 & 0.527078 & 0 & 0.511684 \\ \hline
        2.40 & 0.999997 & 0.789124 & 0.708435 & 0.667615 & 0.642868 & 0.626497 & 0.613865 & 0.605284 & 0 & 0.592076 \\ \hline
    2.50 & 1.000000 & 0.841750 & 0.769194 & 0.731111 & 0.707382 & 0.692981 & 0.681624 & 0.673777 & 0 & 0.661527 \\ \hline
    2.60 & 0.999996 & 0.853234 & 0.782381 & 0.746404 & 0.724822 & 0.709969 & 0.699907 & 0.691703 & 0.685904 & 0.680688 \\ \hline
        2.70 & 1.000000 & 0.874111 & 0.803156 & 0.768423 & 0.746997 & 0.732891 & 0.722954 & 0.715642 & 0.709093 & 0.704861 \\ \hline
    2.80 & 0.999998 & 0.894217 & 0.849368 & 0.826559 & 0.810183 & 0.799699 & 0.791777 & 0.786453 & 0 & 0.777744 \\ \hline
    2.90 & 0.999995 & 0.928070 & 0.900126 & 0.881468 & 0.869825 & 0.862464 & 0.857310 & 0.853049 & 0.849870 & 0.847187 \\ \hline
        3.00 & 0.999990 & 0.958528 & 0.945275 & 0.938107 & 0.933917 & 0.931226 & 0.929398 & 0.927947 & 0.926684 & 0.925014 \\ \hline
    \end{tabular}
            }
  \caption{Entropía de Shannon del mapa Zigzag para distintos valores de $m$}
  \label{t4}
    \end{table}

        %Entropía del mapa logístico
    \begin{table} [ht]
\centering
    \resizebox{10cm}{!}{
        \begin{tabular}{ | l | l | l | l | l | l | l | l | l | l | l |p{2cm} |}
        \hline
        \multicolumn{1}{|c|}{}&\multicolumn{10}{|c|}{Mapa logístico (modificación de Borujeni)}\\
        \hline
        $r$ & L = 1 & L = 2 & L = 3 & L = 4 & L = 5 & L = 6 & L = 7 & L = 8 & L = 9 & L = 10 \\ \hline
        3.30 & 0.998147 & 0.887795 & 0.820539 & 0.776608 & 0.747807 & 0.726720 & 0.708385 & 0.691625 & 0.678369 & 0.667889 \\ \hline
    3.37 & 0.995705 & 0.906133 & 0.831168 & 0.779012 & 0.747166 & 0.725658 & 0.710373 & 0.698681 & 0.688970 & 0.680540 \\ \hline
    3.44 & 0.999987 & 0.954097 & 0.887078 & 0.848970 & 0.818482 & 0.797880 & 0.782519 & 0.770114 & 0 & 0.751224 \\ \hline
        3.51 & 0.998877 & 0.947287 & 0.883722 & 0.851011 & 0.830670 & 0.814424 & 0.803068 & 0.793974 & 0 & 0.780619 \\ \hline
    3.58 & 0.983685 & 0.950772 & 0.920883 & 0.892638 & 0.865254 & 0.839776 & 0.818336 & 0.797837 & 0.781078 & 0.767354 \\ \hline
    3.65 & 0.970236 & 0.937791 & 0.899248 & 0.864822 & 0.837346 & 0.812417 & 0.794843 & 0.781066 & 0 & 0.762424 \\ \hline
        3.72 & 0.972943 & 0.928751 & 0.901627 & 0.871162 & 0.847469 & 0.831195 & 0.819438 & 0.810785 & 0 & 0.797611 \\ \hline
    3.79 & 0.962974 & 0.946805 & 0.933305 & 0.917082 & 0.902282 & 0.888114 & 0.874177 & 0.861700 & 0.850661 & 0.840151 \\ \hline
    3.86 & 0.956858 & 0.932936 & 0.920314 & 0.909508 & 0.895300 & 0.882612 & 0.873679 & 0.865753 & 0.859670 & 0.854040 \\ \hline
        3.93 & 0.939195 & 0.925036 & 0.917891 & 0.911482 & 0.904774 & 0.896499 & 0.888855 & 0.882996 & 0 & 0.873361 \\ \hline
    \end{tabular}
            }
  \caption{Entropía de Shannon del mapa logístico (modificación de Borujeni) para distintos valores de $r$}
  \label{t5}
    \end{table}


    \clearpage

    \end{document}

答案1

只需将这四个放入tabulars一个表中即可。(注意:我的编辑器和 inputenc 不兼容。)

\documentclass[10pt,onecolumn]{article}
\usepackage{graphicx}
\usepackage{lmodern}
%\usepackage[T1]{fontenc}
\usepackage[spanish,,activeacute,es-lcroman,es-tabla]{babel}
\usepackage{mathtools}
%\usepackage[latin1]{inputenc}
\usepackage{dcolumn}
\usepackage{float}
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{epstopdf}
\usepackage{subfig}
\usepackage{color}
\usepackage{pifont}
\usepackage{apacite}
\usepackage{authblk}
\usepackage{rotating}
\usepackage{verbatim}
\usepackage{showframe}% debugging tool

\spanishdecimal{.}

%%% FOR SanDie
\setlength{\oddsidemargin}{-0.25in}
\setlength{\evensidemargin}{-0.25in}
%%\setlength{\unitlength}{1cm}
\setlength{\topmargin}{-0.25in}
%%\setlength{\topmargin}{-0.6in}
\setlength{\textwidth}{17.7cm}
%%\setlength{\textwidth}{6.70in}
\setlength{\textheight}{21.7cm}
\setlength{\columnsep}{0.25in}

\renewcommand\Authands{ and }

\begin{document}

%Entropía de shift de bernoulli 
    \begin{table} [p]
\begin{minipage}[c][\textheight][c]{\textwidth}% adjust vertical spacing to fill page
\centering
    \resizebox{10cm}{!}{
        \begin{tabular}{ | l | l | l | l | l | l | l | l | l | l | l |p{2cm} |}
        \hline
        \multicolumn{1}{|c|}{}&\multicolumn{10}{|c|}{Shift de Bernoulli}\\
        \hline
        $\beta$ & L = 1 & L = 2 & L = 3 & L = 4 & L = 5 & L = 6 & L = 7 & L = 8 & L = 9 & L = 10 \\ \hline
        1.50 & 1.000000 & 0.898050 & 0.827012 & 0.785424 & 0.747959 & 0.722424 & 0.704147 & 0.690229 & 0 & 0.670651 \\ \hline
    1.55 & 1.000000 & 0.916890 & 0.841441 & 0.801419 & 0.773649 & 0.755601 & 0.738271 & 0.725952 & 0.715557 & 0.707855 \\ \hline
    1.60 & 1.000000 & 0.920117 & 0.844872 & 0.806559 & 0.783581 & 0.767813 & 0.756117 & 0.747022 & 0.740176 & 0.734052 \\ \hline
        1.65 & 1.000000 & 0.947536 & 0.896107 & 0.870941 & 0.847927 & 0.832831 & 0.819907 & 0.808284 & 0 & 0.791273 \\ \hline
    1.70 & 1.000000 & 0.964277 & 0.926722 & 0.905377 & 0.880436 & 0.864285 & 0.851503 & 0.841719 & 0 & 0.826751 \\ \hline
    1.75 & 1.000000 & 0.974442 & 0.946442 & 0.925901 & 0.908685 & 0.894906 & 0.883084 & 0.873798 & 0 & 0.860708 \\ \hline
        1.80 & 1.000000 & 0.974673 & 0.954581 & 0.934637 & 0.921529 & 0.911290 & 0.903615 & 0.896809 & 0.891743 & 0.887328 \\ \hline
    1.85 & 1.000000 & 0.983592 & 0.969827 & 0.954652 & 0.944855 & 0.937378 & 0.930590 & 0.925633 & 0.921462 & 0.917790 \\ \hline
    1.90 & 1.000000 & 0.991403 & 0.983637 & 0.976293 & 0.969272 & 0.964119 & 0.959469 & 0.955404 & 0.952077 & 0.949164 \\ \hline
        1.95 & 1.000000 & 0.997152 & 0.994268 & 0.991385 & 0.988121 & 0.985305 & 0.982651 & 0.980670 & 0.978693 & 0.976881 \\ \hline
    \end{tabular}
            }
  \caption{Entrop'ia de Shannon del Shift de Bernoulli para distintos valores de $\beta$}
  \label{t2}
\vfil
    \resizebox{10cm}{!}{
        \begin{tabular}{ | l | l | l | l | l | l | l | l | l | l | l |p{2cm} |}
        \hline
        \multicolumn{1}{|c|}{}&\multicolumn{10}{|c|}{Mapa casa de campaña}\\
        \hline
        \mbox{$\mu$} & L = 1 & L = 2 & L = 3 & L = 4 & L = 5 & L = 6 & L = 7 & L = 8 & L = 9 & L = 10 \\ \hline
        1.10 & 0.999993 & 0.719640 & 0.623817 & 0.574029 & 0.543667 & 0.520606 & 0.503077 & 0.487768 & 0.476277 & 0.466137 \\ \hline
    1.19 & 0.999998 & 0.817096 & 0.749261 & 0.707740 & 0.6776148 & 0.651696 & 0.634337 & 0.621131 & 0 & 0.603097 \\ \hline
    1.28 & 0.999999 & 0.879155 & 0.823397 & 0.779928 & 0.748377 & 0.724584 & 0.706202 & 0.693772 & 0 & 0.674838 \\ \hline
        1.37 & 0.999997 & 0.920656 & 0.869041 & 0.842761 & 0.824498 & 0.809629 & 0.797052 & 0.786884 & 0 & 0.773294 \\ \hline
    1.46 & 1.000000 & 0.949674 & 0.896665 & 0.860753 & 0.835422 & 0.817890 & 0.805291 & 0.795185 & 0.787030 & 0.781269 \\ \hline
    1.55 & 0.999994 & 0.969246 & 0.910175 & 0.876628 & 0.855609 & 0.841122 & 0.830476 & 0.822020 & 0.815750 & 0.810293 \\ \hline
        1.64 & 1.000000 & 0.982636 & 0.931041 & 0.902826 & 0.884917 & 0.871120 & 0.860587 & 0.852203 & 0 & 0.840969 \\ \hline
    1.73 & 1.000000 & 0.991316 & 0.971207 & 0.944120 & 0.928266 & 0.917097 & 0.909319 & 0.902637 & 0 & 0.893963 \\ \hline
    1.82 & 0.999999 & 0.996628 & 0.989237 & 0.978702 & 0.966802 & 0.958673 & 0.950962 & 0.945109 & 0 & 0.936640 \\ \hline
        1.9 & 1.000000 & 0.999062 & 0.997298 & 0.994353 & 0.989116 & 0.983875 & 0.979076 & 0.975790 & 0.972602 & 0.969625 \\ \hline
    \end{tabular}
            }
  \caption{Entrop'ia de Shannon del mapa casa de campa\~na para distintos valores de $\mu$}
  \label{t3}
\vfil
    \resizebox{10cm}{!}{
        \begin{tabular}{ | l | l | l | l | l | l | l | l | l | l | l |p{2cm} |}
        \hline
        \multicolumn{1}{|c|}{}&\multicolumn{10}{|c|}{Mapa Zigzag}\\
        \hline
        $m$ & L = 1 & L = 2 & L = 3 & L = 4 & L = 5 & L = 6 & L = 7 & L = 8 & L = 9 & L = 10 \\ \hline
        2.10 & 1.000000 & 0.621975 & 0.493608 & 0.430285 & 0.390371 & 0.364907 & 0.345455 & 0.331640 & 0.319643 & 0.311410 \\ \hline
    2.20 & 0.999993 & 0.692496 & 0.586389 & 0.531991 & 0.498349 & 0.476484 & 0.460860 & 0.448248 & 0 & 0.431709 \\ \hline
    2.30 & 0.999985 & 0.745348 & 0.655012 & 0.603466 & 0.572939 & 0.552549 & 0.537519 & 0.527078 & 0 & 0.511684 \\ \hline
        2.40 & 0.999997 & 0.789124 & 0.708435 & 0.667615 & 0.642868 & 0.626497 & 0.613865 & 0.605284 & 0 & 0.592076 \\ \hline
    2.50 & 1.000000 & 0.841750 & 0.769194 & 0.731111 & 0.707382 & 0.692981 & 0.681624 & 0.673777 & 0 & 0.661527 \\ \hline
    2.60 & 0.999996 & 0.853234 & 0.782381 & 0.746404 & 0.724822 & 0.709969 & 0.699907 & 0.691703 & 0.685904 & 0.680688 \\ \hline
        2.70 & 1.000000 & 0.874111 & 0.803156 & 0.768423 & 0.746997 & 0.732891 & 0.722954 & 0.715642 & 0.709093 & 0.704861 \\ \hline
    2.80 & 0.999998 & 0.894217 & 0.849368 & 0.826559 & 0.810183 & 0.799699 & 0.791777 & 0.786453 & 0 & 0.777744 \\ \hline
    2.90 & 0.999995 & 0.928070 & 0.900126 & 0.881468 & 0.869825 & 0.862464 & 0.857310 & 0.853049 & 0.849870 & 0.847187 \\ \hline
        3.00 & 0.999990 & 0.958528 & 0.945275 & 0.938107 & 0.933917 & 0.931226 & 0.929398 & 0.927947 & 0.926684 & 0.925014 \\ \hline
    \end{tabular}
            }
  \caption{Entrop'ia de Shannon del mapa Zigzag para distintos valores de $m$}
  \label{t4}
\vfil
    \resizebox{10cm}{!}{
        \begin{tabular}{ | l | l | l | l | l | l | l | l | l | l | l |p{2cm} |}
        \hline
        \multicolumn{1}{|c|}{}&\multicolumn{10}{|c|}{Mapa logístico (modificación de Borujeni)}\\
        \hline
        $r$ & L = 1 & L = 2 & L = 3 & L = 4 & L = 5 & L = 6 & L = 7 & L = 8 & L = 9 & L = 10 \\ \hline
        3.30 & 0.998147 & 0.887795 & 0.820539 & 0.776608 & 0.747807 & 0.726720 & 0.708385 & 0.691625 & 0.678369 & 0.667889 \\ \hline
    3.37 & 0.995705 & 0.906133 & 0.831168 & 0.779012 & 0.747166 & 0.725658 & 0.710373 & 0.698681 & 0.688970 & 0.680540 \\ \hline
    3.44 & 0.999987 & 0.954097 & 0.887078 & 0.848970 & 0.818482 & 0.797880 & 0.782519 & 0.770114 & 0 & 0.751224 \\ \hline
        3.51 & 0.998877 & 0.947287 & 0.883722 & 0.851011 & 0.830670 & 0.814424 & 0.803068 & 0.793974 & 0 & 0.780619 \\ \hline
    3.58 & 0.983685 & 0.950772 & 0.920883 & 0.892638 & 0.865254 & 0.839776 & 0.818336 & 0.797837 & 0.781078 & 0.767354 \\ \hline
    3.65 & 0.970236 & 0.937791 & 0.899248 & 0.864822 & 0.837346 & 0.812417 & 0.794843 & 0.781066 & 0 & 0.762424 \\ \hline
        3.72 & 0.972943 & 0.928751 & 0.901627 & 0.871162 & 0.847469 & 0.831195 & 0.819438 & 0.810785 & 0 & 0.797611 \\ \hline
    3.79 & 0.962974 & 0.946805 & 0.933305 & 0.917082 & 0.902282 & 0.888114 & 0.874177 & 0.861700 & 0.850661 & 0.840151 \\ \hline
    3.86 & 0.956858 & 0.932936 & 0.920314 & 0.909508 & 0.895300 & 0.882612 & 0.873679 & 0.865753 & 0.859670 & 0.854040 \\ \hline
        3.93 & 0.939195 & 0.925036 & 0.917891 & 0.911482 & 0.904774 & 0.896499 & 0.888855 & 0.882996 & 0 & 0.873361 \\ \hline
    \end{tabular}
            }
  \caption{Entrop'ia de Shannon del mapa log'istico (modificaci'on de Borujeni) para distintos valores de $r$}
  \label{t5}
  \end{minipage}
    \end{table}

    \clearpage

    \end{document}

答案2

在您的情况下,您可以使用以下行更改相关计数器的默认值:

\setcounter{totalnumber}{5} % (default 3) 
\setcounter{topnumber}{4}   % (default 2) 

然后您的 4 个表格将按照您的意愿显示在一页上。

我改变了你的包调用的顺序,并评论了这里的问题不需要的包。

因此请参阅以下 MWE:

\documentclass[10pt,onecolumn]{article}


\usepackage[T1]{fontenc}
\usepackage[latin1]{inputenc}
\usepackage[spanish,activeacute,es-lcroman,es-tabla]{babel} % ?????,,

\usepackage{lmodern}
\usepackage{mathtools}
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{pifont}

\usepackage{dcolumn}
\usepackage{float}

%\usepackage{epstopdf}
%\usepackage{graphicx}
%\usepackage{subfig}
%\usepackage{color}

%\usepackage{apacite}
%\usepackage{authblk}
%\renewcommand\Authands{ and }
%\usepackage{rotating}
%\usepackage{verbatim}

\spanishdecimal{.}

%%% FOR SanDie
\setlength{\oddsidemargin}{-0.25in}
\setlength{\evensidemargin}{-0.25in}
%%\setlength{\unitlength}{1cm}
\setlength{\topmargin}{-0.25in}
%%\setlength{\topmargin}{-0.6in}
\setlength{\textwidth}{17.7cm}
%%\setlength{\textwidth}{6.70in}
\setlength{\textheight}{21.7cm}
\setlength{\columnsep}{0.25in}

\setcounter{totalnumber}{5} % (default 3) <=============================
\setcounter{topnumber}{4}   % (default 2) <=============================


\begin{document}

%Entropía de shift de bernoulli 
    \begin{table} [ht]
\centering
    \resizebox{10cm}{!}{
        \begin{tabular}{ | l | l | l | l | l | l | l | l | l | l | l |p{2cm} |}
        \hline
        \multicolumn{1}{|c|}{}&\multicolumn{10}{|c|}{Shift de Bernoulli}\\
        \hline
        $\beta$ & L = 1 & L = 2 & L = 3 & L = 4 & L = 5 & L = 6 & L = 7 & L = 8 & L = 9 & L = 10 \\ \hline
        1.50 & 1.000000 & 0.898050 & 0.827012 & 0.785424 & 0.747959 & 0.722424 & 0.704147 & 0.690229 & 0 & 0.670651 \\ \hline
    1.55 & 1.000000 & 0.916890 & 0.841441 & 0.801419 & 0.773649 & 0.755601 & 0.738271 & 0.725952 & 0.715557 & 0.707855 \\ \hline
    1.60 & 1.000000 & 0.920117 & 0.844872 & 0.806559 & 0.783581 & 0.767813 & 0.756117 & 0.747022 & 0.740176 & 0.734052 \\ \hline
        1.65 & 1.000000 & 0.947536 & 0.896107 & 0.870941 & 0.847927 & 0.832831 & 0.819907 & 0.808284 & 0 & 0.791273 \\ \hline
    1.70 & 1.000000 & 0.964277 & 0.926722 & 0.905377 & 0.880436 & 0.864285 & 0.851503 & 0.841719 & 0 & 0.826751 \\ \hline
    1.75 & 1.000000 & 0.974442 & 0.946442 & 0.925901 & 0.908685 & 0.894906 & 0.883084 & 0.873798 & 0 & 0.860708 \\ \hline
        1.80 & 1.000000 & 0.974673 & 0.954581 & 0.934637 & 0.921529 & 0.911290 & 0.903615 & 0.896809 & 0.891743 & 0.887328 \\ \hline
    1.85 & 1.000000 & 0.983592 & 0.969827 & 0.954652 & 0.944855 & 0.937378 & 0.930590 & 0.925633 & 0.921462 & 0.917790 \\ \hline
    1.90 & 1.000000 & 0.991403 & 0.983637 & 0.976293 & 0.969272 & 0.964119 & 0.959469 & 0.955404 & 0.952077 & 0.949164 \\ \hline
        1.95 & 1.000000 & 0.997152 & 0.994268 & 0.991385 & 0.988121 & 0.985305 & 0.982651 & 0.980670 & 0.978693 & 0.976881 \\ \hline
    \end{tabular}
            }
  \caption{Entropía de Shannon del Shift de Bernoulli para distintos valores de $\beta$}
  \label{t2}
    \end{table}

    %Entropía del mapa casa de campaña
    \begin{table} [ht]
\centering
    \resizebox{10cm}{!}{
        \begin{tabular}{ | l | l | l | l | l | l | l | l | l | l | l |p{2cm} |}
        \hline
        \multicolumn{1}{|c|}{}&\multicolumn{10}{|c|}{Mapa casa de campaña}\\
        \hline
        $\mu$ & L = 1 & L = 2 & L = 3 & L = 4 & L = 5 & L = 6 & L = 7 & L = 8 & L = 9 & L = 10 \\ \hline
        1.10 & 0.999993 & 0.719640 & 0.623817 & 0.574029 & 0.543667 & 0.520606 & 0.503077 & 0.487768 & 0.476277 & 0.466137 \\ \hline
    1.19 & 0.999998 & 0.817096 & 0.749261 & 0.707740 & 0.6776148 & 0.651696 & 0.634337 & 0.621131 & 0 & 0.603097 \\ \hline
    1.28 & 0.999999 & 0.879155 & 0.823397 & 0.779928 & 0.748377 & 0.724584 & 0.706202 & 0.693772 & 0 & 0.674838 \\ \hline
        1.37 & 0.999997 & 0.920656 & 0.869041 & 0.842761 & 0.824498 & 0.809629 & 0.797052 & 0.786884 & 0 & 0.773294 \\ \hline
    1.46 & 1.000000 & 0.949674 & 0.896665 & 0.860753 & 0.835422 & 0.817890 & 0.805291 & 0.795185 & 0.787030 & 0.781269 \\ \hline
    1.55 & 0.999994 & 0.969246 & 0.910175 & 0.876628 & 0.855609 & 0.841122 & 0.830476 & 0.822020 & 0.815750 & 0.810293 \\ \hline
        1.64 & 1.000000 & 0.982636 & 0.931041 & 0.902826 & 0.884917 & 0.871120 & 0.860587 & 0.852203 & 0 & 0.840969 \\ \hline
    1.73 & 1.000000 & 0.991316 & 0.971207 & 0.944120 & 0.928266 & 0.917097 & 0.909319 & 0.902637 & 0 & 0.893963 \\ \hline
    1.82 & 0.999999 & 0.996628 & 0.989237 & 0.978702 & 0.966802 & 0.958673 & 0.950962 & 0.945109 & 0 & 0.936640 \\ \hline
        1.9 & 1.000000 & 0.999062 & 0.997298 & 0.994353 & 0.989116 & 0.983875 & 0.979076 & 0.975790 & 0.972602 & 0.969625 \\ \hline
    \end{tabular}
            }
  \caption{Entropía de Shannon del mapa casa de campaña para distintos valores de $\mu$}
  \label{t3}
    \end{table}

    %Entropía del mapa Zigzag
    \begin{table} [ht]
\centering
    \resizebox{10cm}{!}{
        \begin{tabular}{ | l | l | l | l | l | l | l | l | l | l | l |p{2cm} |}
        \hline
        \multicolumn{1}{|c|}{}&\multicolumn{10}{|c|}{Mapa Zigzag}\\
        \hline
        $m$ & L = 1 & L = 2 & L = 3 & L = 4 & L = 5 & L = 6 & L = 7 & L = 8 & L = 9 & L = 10 \\ \hline
        2.10 & 1.000000 & 0.621975 & 0.493608 & 0.430285 & 0.390371 & 0.364907 & 0.345455 & 0.331640 & 0.319643 & 0.311410 \\ \hline
    2.20 & 0.999993 & 0.692496 & 0.586389 & 0.531991 & 0.498349 & 0.476484 & 0.460860 & 0.448248 & 0 & 0.431709 \\ \hline
    2.30 & 0.999985 & 0.745348 & 0.655012 & 0.603466 & 0.572939 & 0.552549 & 0.537519 & 0.527078 & 0 & 0.511684 \\ \hline
        2.40 & 0.999997 & 0.789124 & 0.708435 & 0.667615 & 0.642868 & 0.626497 & 0.613865 & 0.605284 & 0 & 0.592076 \\ \hline
    2.50 & 1.000000 & 0.841750 & 0.769194 & 0.731111 & 0.707382 & 0.692981 & 0.681624 & 0.673777 & 0 & 0.661527 \\ \hline
    2.60 & 0.999996 & 0.853234 & 0.782381 & 0.746404 & 0.724822 & 0.709969 & 0.699907 & 0.691703 & 0.685904 & 0.680688 \\ \hline
        2.70 & 1.000000 & 0.874111 & 0.803156 & 0.768423 & 0.746997 & 0.732891 & 0.722954 & 0.715642 & 0.709093 & 0.704861 \\ \hline
    2.80 & 0.999998 & 0.894217 & 0.849368 & 0.826559 & 0.810183 & 0.799699 & 0.791777 & 0.786453 & 0 & 0.777744 \\ \hline
    2.90 & 0.999995 & 0.928070 & 0.900126 & 0.881468 & 0.869825 & 0.862464 & 0.857310 & 0.853049 & 0.849870 & 0.847187 \\ \hline
        3.00 & 0.999990 & 0.958528 & 0.945275 & 0.938107 & 0.933917 & 0.931226 & 0.929398 & 0.927947 & 0.926684 & 0.925014 \\ \hline
    \end{tabular}
            }
  \caption{Entropía de Shannon del mapa Zigzag para distintos valores de $m$}
  \label{t4}
    \end{table}

        %Entropía del mapa logístico
    \begin{table} [ht]
\centering
    \resizebox{10cm}{!}{
        \begin{tabular}{ | l | l | l | l | l | l | l | l | l | l | l |p{2cm} |}
        \hline
        \multicolumn{1}{|c|}{}&\multicolumn{10}{|c|}{Mapa logístico (modificación de Borujeni)}\\
        \hline
        $r$ & L = 1 & L = 2 & L = 3 & L = 4 & L = 5 & L = 6 & L = 7 & L = 8 & L = 9 & L = 10 \\ \hline
        3.30 & 0.998147 & 0.887795 & 0.820539 & 0.776608 & 0.747807 & 0.726720 & 0.708385 & 0.691625 & 0.678369 & 0.667889 \\ \hline
    3.37 & 0.995705 & 0.906133 & 0.831168 & 0.779012 & 0.747166 & 0.725658 & 0.710373 & 0.698681 & 0.688970 & 0.680540 \\ \hline
    3.44 & 0.999987 & 0.954097 & 0.887078 & 0.848970 & 0.818482 & 0.797880 & 0.782519 & 0.770114 & 0 & 0.751224 \\ \hline
        3.51 & 0.998877 & 0.947287 & 0.883722 & 0.851011 & 0.830670 & 0.814424 & 0.803068 & 0.793974 & 0 & 0.780619 \\ \hline
    3.58 & 0.983685 & 0.950772 & 0.920883 & 0.892638 & 0.865254 & 0.839776 & 0.818336 & 0.797837 & 0.781078 & 0.767354 \\ \hline
    3.65 & 0.970236 & 0.937791 & 0.899248 & 0.864822 & 0.837346 & 0.812417 & 0.794843 & 0.781066 & 0 & 0.762424 \\ \hline
        3.72 & 0.972943 & 0.928751 & 0.901627 & 0.871162 & 0.847469 & 0.831195 & 0.819438 & 0.810785 & 0 & 0.797611 \\ \hline
    3.79 & 0.962974 & 0.946805 & 0.933305 & 0.917082 & 0.902282 & 0.888114 & 0.874177 & 0.861700 & 0.850661 & 0.840151 \\ \hline
    3.86 & 0.956858 & 0.932936 & 0.920314 & 0.909508 & 0.895300 & 0.882612 & 0.873679 & 0.865753 & 0.859670 & 0.854040 \\ \hline
        3.93 & 0.939195 & 0.925036 & 0.917891 & 0.911482 & 0.904774 & 0.896499 & 0.888855 & 0.882996 & 0 & 0.873361 \\ \hline
    \end{tabular}
            }
  \caption{Entropía de Shannon del mapa logístico (modificación de Borujeni) para distintos valores de $r$}
  \label{t5}
\end{table}


\clearpage

\end{document}

结果:

得到的 mwe 表

你可以在这个问题中找到 Frank Mittelbach 的一个非常好的答案如何影响 LaTeX 中图形和表格等浮动环境的位置?

相关内容