我正在尝试将三个向量放在一组中以完成我的数学作业,但当我运行它时,它显示一些错误,我不知道如何处理它。请帮忙!这是代码及其错误
\begin{document}
1. To find basis for the four fundemental subspaces, we need to get the
RREF of the matrix
A = $\begin{bmatrix}
-3 & 0 & 0 & -2 & 1 \\
0 & -1 & 1 & 2 & -1 \\
1 & 2 & -3 & -4 & 2 \\
-2 & 0 & -1 & -2 & 1 \\
0 & 2 & 1 & -2 & 1 \\
\end{bmatrix}$ =
$\begin {bmatrix}
1 & 2 & -3 & -4 & 2 \\
0 & 1 & -1 & -2 & 1 \\
0 & 0 & 1 & \frac{2}{3} & -\frac{1}{3} \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}$ = $\begin {bmatrix}
1 & 0 & 0 & \frac{2}{3} & \frac{1}{3} \\
0 & 1 & 0 & -\frac{4}{3} & \frac{4}{3} \\
0 & 0 & 1 & \frac{2}{3} & -\frac{1}{3} \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end {bmatrix}$\\
\\
now, we need to find the basis fo Col(A) and Row(A)\\
recall that a basis for Col(A) is the columns in the original matrix
with all the columns in RREF that has a leading one\\
thus, a basis for Col(A) is \\
\begin{equation}
Col(A) = \left \{$\begin{bmatrix} -3 \\ 0 \\ 1 \\ -2 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ -1 \\ 2 \\ 0 \\ 2 \end{bmatrix}$ , $\begin{bmatrix} 0 \\ 1 \\ -3 \\ -1 \\ 1 \end{bmatrix}$ \right\}
\end{equation}
\end{document}
并显示错误
39 Missing \right. inserted.
<inserted text>
\right .
l.39 Col(A) = \left \{$
\begin{bmatrix} -3 \\ 0 \\ 1 \\ -2 \\ 0 \end{bmatrix}...
39 Display math should end with $$.
<to be read again>
\def
l.39 Col(A) = \left \{$\begin{bmatrix}
14
Underfull \hbox (badness 10000) in paragraph at lines 14--38
答案1
您已经在矩阵中处于数学模式,因此无需使用 重新启动它$
。这就是 的Display math should end with $$.
来源。
出现此错误的Missing \right. inserted.
原因在于,您似乎在离开数学模式时将 放错了矩阵$
,但您已使用 开始使用大括号,并且它们在 之前\left
没有用 结束。\right
$
这解决了以下问题:
\begin{document}
1. To find basis for the four fundemental subspaces, we need to get the
RREF of the matrix\\
$A = \begin{bmatrix}
-3 & 0 & 0 & -2 & 1 \\
0 & -1 & 1 & 2 & -1 \\
1 & 2 & -3 & -4 & 2 \\
-2 & 0 & -1 & -2 & 1 \\
0 & 2 & 1 & -2 & 1 \\
\end{bmatrix} =
\begin {bmatrix}
1 & 2 & -3 & -4 & 2 \\
0 & 1 & -1 & -2 & 1 \\
0 & 0 & 1 & \frac{2}{3} & -\frac{1}{3} \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end{bmatrix} = \begin {bmatrix}
1 & 0 & 0 & \frac{2}{3} & \frac{1}{3} \\
0 & 1 & 0 & -\frac{4}{3} & \frac{4}{3} \\
0 & 0 & 1 & \frac{2}{3} & -\frac{1}{3} \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end {bmatrix}$\\
\\
now, we need to find the basis for $Col(A)$ and $Row(A)$\\
recall that a basis for $Col(A)$ is the columns in the original matrix
with all the columns in RREF that has a leading one\\
thus, a basis for $Col(A)$ is \\
\begin{equation}
Col(A) = \left \{\begin{bmatrix} -3 \\ 0 \\ 1 \\ -2 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ 2 \\ 0 \\ 2 \end{bmatrix} , \begin{bmatrix} 0 \\ 1 \\ -3 \\ -1 \\ 1 \end{bmatrix} \right\}
\end{equation}
\end{document}