我正在为皇家学会的一位会员排版回忆录,他为我提供了一份手写副本。一切都很顺利,直到出现了一个略微过长的多行方程式:
\documentclass{article}
\usepackage{amsmath}
\begin{document}
\begin{equation*}
u(x) =
\begin{cases}
1 - \frac{1}{2}\left(\frac{r}{a}\right)^{-\frac{1}{2}} \left\{ 1 + O(1 + \tan \vartheta) \right\} + O\left(\left(\frac{r}{a}\right)^{\frac{1}{2}}\right) \text{as } \vartheta \downarrow -\pi/4,\\
1 - \frac{1}{2\pi}\left(\frac{r}{a}\right)^{-\frac{1}{2}}\left(\log \frac{32}{1 - \tan\vartheta}\right) \left\{1 + O(1-\tan\vartheta)\right\} + O\left(\left(\frac{r}{a}\right)^{\frac{1}{2}}\right) \text{as } \vartheta \uparrow \pi/4,
\end{cases}
\end{equation*}
\end{document}
让它运行到额外的一行似乎不太合适,因为我们已经有多行案例了(在实际等式中,实际上比我上面包含的案例多出两个)。我也尝试使用该\!
命令取出一些水平空间,但结果看起来有点混乱。
有人有其他想法吗?我不愿意摆弄边距/文档字体大小,因为文档的这一部分需要使用默认几何形状连接到其他人(我假设)输入的部分。
答案1
这些解决方案之一怎么样?
\documentclass{article}
\usepackage{mathtools}
\usepackage{showframe}
\begin{document}
\begin{align*}
& u(x) = \\
& \begin{cases}
1 - \frac{1}{2}\left(\frac{r}{a}\right)^{-\frac{1}{2}} \left\{ 1 + O(1 + \tan ϑ) \right\} + O\left(\left(\frac{r}{a}\right)^{\frac{1}{2}}\right) \text{as } ϑ\downarrow -\pi/4,\\
1 - \frac{1}{2π}\left(\frac{r}{a}\right)^{-\frac{1}{2}}\left(\log \frac{32}{1 - \tanϑ}\right) \left\{1 + O(1-\tanϑ)\right\} + O\left(\left(\frac{r}{a}\right)^{\frac{1}{2}}\right) \text{as } ϑ\uparrow \pi/4,
\end{cases}
\end{align*}
\begin{gather*}
\shortintertext{$ u(x) = $}
\begin{cases}
1 - \frac{1}{2}\left(\frac{r}{a}\right)^{-\frac{1}{2}} \left\{ 1 + O(1 + \tan ϑ) \right\} + O\left(\left(\frac{r}{a}\right)^{\frac{1}{2}}\right) \text{as } ϑ\downarrow -\pi/4, \\
1 - \frac{1}{2π}\left(\frac{r}{a}\right)^{-\frac{1}{2}}\left(\log \frac{32}{1 - \tanϑ}\right) \left\{1 + O(1-\tanϑ)\right\} + O\left(\left(\frac{r}{a}\right)^{\frac{1}{2}}\right) \text{as } ϑ\uparrow \pi/4,
\end{cases}
\end{gather*}
\end{document}
答案2
我受益于第一行比第二行短得多的事实:
\documentclass{article}
\usepackage{showframe} % just for the example
\usepackage{amsmath}
\begin{document}
\begin{equation*}
u(x) =
\begin{cases}
\begin{array}{@{}l@{}}
1 - \frac{1}{2}\left(\frac{r}{a}\right)^{-\frac{1}{2}} \{ 1 + O(1 + \tan \vartheta) \} +
O\Bigl(\left(\frac{r}{a}\right)^{\frac{1}{2}}\Bigr) \qquad
\text{as } \vartheta \downarrow -\pi/4,\\[2ex]
1 - \frac{1}{2\pi}\left(\frac{r}{a}\right)^{-\frac{1}{2}}
\left(\log \frac{32}{1 - \tan\vartheta}\right) \{1 + O(1-\tan\vartheta)\} +
O\Bigl(\left(\frac{r}{a}\right)^{\frac{1}{2}}\Bigr) \qquad\\
\multicolumn{1}{r}{\text{as } \vartheta \uparrow \pi/4,}
\end{array}
\end{cases}
\end{equation*}
\end{document}
答案3
我喜欢以下解决方案:
\documentclass{article}
\usepackage{mathtools}
\usepackage{showframe}
\begin{document}
\begin{align*}
u(x) =
& \begin{dcases}
1 - \frac{1}{2}\left(\frac{r}{a}\middle)^{-\frac{1}{2}}
\middle\{1 + O(1 + \tan ϑ) \middle\} +
O\middle(\left(\frac{r}{a}\right)^{\frac{1}{2}}\right)
& \text{as } ϑ\downarrow -\pi/4, \\
\begin{multlined}[b][0.55\textwidth]
1 - \frac{1}{2π}\left(\frac{r}{a}\right)^{-\frac{1}{2}}
\left(\log\frac{32}{1 - \tanϑ}\right)\cdot \\
\left\{1 + O(1-\tanϑ)\middle\} +
O\middle(\left(\frac{r}{a}\right)^{\frac{1}{2}}\right)
\end{multlined}
& \text{as } ϑ\uparrow \pi/4,
\end{dcases}\\
%
u(x) =
& \begin{dcases}
1 - \frac{1}{2}\left(\frac{r}{a}\middle)^{-\frac{1}{2}}
\middle\{1 + O(1 + \tan ϑ) \middle\} +
O\middle(\left(\frac{r}{a}\right)^{\frac{1}{2}}\right)
& \text{as } ϑ\downarrow -\pi/4, \\
\begin{multlined}[b][0.55\textwidth]
1 - \frac{1}{2π}\left(\frac{r}{a}\right)^{-\frac{1}{2}}
\left(\log\frac{32}{1 - \tanϑ}\right)\cdot \\
\left\{1 + O(1-\tanϑ)\middle\} +
O\middle(\left(\frac{r}{a}\right)^{\frac{1}{2}}\right)
\end{multlined}
& \text{as } ϑ\uparrow \pi/4,
\end{dcases}
\end{align*}
\end{document}