我想知道是否有办法让每个证明自动引用我文本中使用的最新定理,或者,让证明标有升序数字。请允许我用 MWE 进行演示:
\documentclass[a4paper, 12pt]{article}
\usepackage{amsmath, amssymb, amsthm}
\newtheorem{thm}{Theorem}[section]
\newtheorem{prop}[thm]{Proposition}
\newtheorem{lem}[thm]{Lemma}
\newtheorem{cor}[thm]{Corollary}
\newtheorem{defn}[thm]{Definition}
\begin{document}
\section{A section}
\begin{defn}
An integer $n$ has odd parity (equiv.: ``is odd") if and only if there exists an integer $k$ such that $n = 2k+1$. $n$ has even parity (equiv.: ``is even") if and only if it does not have odd parity.
\label{defn:oddAndEvenParity}
\end{defn}
\begin{thm}{(Squares of odds are also odd)}
If $n$ is an odd integer, then $n^2$ is also an odd integer.
\label{thm:oddSquares}
\end{thm}
\begin{cor}{(Even perfect squares have even square roots)}
If $n^2$ is an even integer, then $n$ is also even.
\label{cor:evenSquareRoots}
\end{cor}
\begin{proof}
We prove the statement directly. Since $n$ is odd, we have that there exists an integer $k$ such that $n = 2k+1$. By algebra, we have that $n^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 2\underbrace{k(2k + 2)}_{r \in \mathbb{Z}} + 1 = 2r + 1$. Therefore, $n^2$ is odd.
\label{prf:evenSquareRoots}
\end{proof}
Referring to the proof above through its label yields the section number: \ref{prf:evenSquareRoots}.
\end{document}
当然,我可以通过标记定理来引用文中定理的证明,但给定的定理可以有许多不同的证明。因此,在这种情况下,我真正需要的是一些补救措施,使我能够做到以下其中一件事
- 将开始证明的“证明”字符串替换为“定理 1.2 的证明”,并将其反映在参考文献中,或
- 说出这个证明
Proof 1
,然后是下一个Proof 2
,等等。
我发现这尝试执行第一个操作的线程,但 op 使用的是不同的文档类elsarticle
。我不熟悉该特定文档类,并且我发现该newproof
包与 相冲突amsthm
,而 是我对定理、定义、引理等绝对需要的。我尝试了一些补救措施,通过使用\newtheorem
来定义替代proof
的环境,但它们都无法完全满足我的需要。有什么想法吗?
答案1
通过提供适当的参考作为可选参数来更新证明的标题:
\documentclass{article} \usepackage{amsmath,amssymb,amsthm} \newtheorem{thm}{Theorem}[section] \newtheorem{cor}[thm]{Corollary} \newtheorem{defn}[thm]{Definition} \begin{document} \section{A section} \begin{defn} An integer~$n$ has odd parity (equiv.: ``is odd") if and only if there exists an integer~$k$ such that $n = 2k + 1$.~$n$ has even parity (equiv.: ``is even") if and only if it does not have odd parity. \label{defn:oddAndEvenParity} \end{defn} \begin{thm}{(Squares of odds are also odd)} If~$n$ is an odd integer, then~$n^2$ is also an odd integer. \label{thm:oddSquares} \end{thm} \begin{cor}{(Even perfect squares have even square roots)} If~$n^2$ is an even integer, then $n$ is also even. \label{cor:evenSquareRoots} \end{cor} \begin{proof}[Proof of Theorem~\ref{thm:oddSquares}] We prove the statement directly. Since $n$ is odd, we have that there exists an integer~$k$ such that $n = 2k + 1$. Subsequently, $n^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 2k(2k + 2) + 1 = 2r + 1$, where $r = 2k + 1$. Therefore,~$n^2$ is odd. \end{proof} \end{document}
您可以通过在序言中添加以下内容来创建自动校样编号机制
\newcounter{proof} \renewcommand{\proofname}{\refstepcounter{proof}Proof~\theproof}
这会按顺序对您的证明进行编号为
Proof 1
、、Proof 2
...,并允许您引用它们。如果你不想要自动编号,我建议使用
\begin{proof}[Proof~1] <first proof> \end{proof} ... \begin{proof}[Proof~2] <second proof> \end{proof} ...