我使用以下内容绘制了一个表格:
\begin{table}[hbt]
\begin{center}
\begin{tabular}{| l | l | c | c |}
\cline{2-4}
\hhline{~---} & \multicolumn{3}{c|}{Examples}\\
\hhline{~---}
& description & $M$ & ${\bf{u}}$\\
\hline
translation & through vector $\left(\begin{smallmatrix} 6 \\ 7 \end{smallmatrix}\right)$ & $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ & $\begin{pmatrix} 6 \\ 7 \end{pmatrix}$ \\
\hline
reflection & in line $x = 2$ & $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ & $\begin{pmatrix} 4 \\ 0 \end{pmatrix}$ \\
\hline
rotation & about ${\bf{0}}$ through $\pi$ radians & $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ & $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ \\
\hline
glide reflection & in line $y = x$, then through $\left(\begin{smallmatrix} 1 \\ 1 \end{smallmatrix}\right)$ & $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ & $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ \\
\hline
\end{tabular}
\caption{Examples of Euclidean Transformations}
\label{tab1}
\end{center}
\end{table}
如何删除左上角的垂直线?
答案1
为此使用两个\multicolumn{1}{c|}
。我借此机会改进了您的表格,使其垂直线和水平线整齐相交,并在行中添加了一些填充,并附带了包装makecell
。最后,我将最后一行的前两个单元格更改为两行单元格:
\documentclass{article}
\usepackage{mathtools, nccmath, hhline}
\usepackage{makecell}
\setcellgapes{3pt}
\begin{document}
\begin{table}[hbt]
\centering\makegapedcells
\begin{tabular}{|r | l | c | c |}
\cline{2-4}
\hhline{~|---|} \multicolumn{1}{c |}{}& \multicolumn{3}{c|}{Examples}\\
\hhline{~|---|}
\multicolumn{1}{c |}{}& description & $M$ & ${\bf{u}}$\\
\hhline{|----|}
translation & through vector $\left(\begin{smallmatrix} 6 \\ 7 \end{smallmatrix}\right)$ & $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ & $\begin{pmatrix} 6 \\ 7 \end{pmatrix}$ \\
\hhline{|----|}
reflection & in line $x = 2$ & $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ & $\begin{pmatrix} 4 \\ 0 \end{pmatrix}$ \\
\hhline{|----|}
rotation & about ${\bf{0}}$ through $\pi$ radians & $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ & $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ \\
\hhline{|----|}
\makecell[l]{glide reflection\\~} &\makecell[l]{ in line $y = x$,\\ then through $\left(\begin{smallmatrix} 1 \\ 1 \end{smallmatrix}\right)$} & $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ & $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ \\
\hhline{|----|}
\end{tabular}
\caption{Examples of Euclidean Transformations}
\label{tab1}
\end{table}
\end{document}
答案2
\documentclass{article}
\usepackage{hhline}
\usepackage{mathtools}
\begin{document}
\begin{table}[hbt]
\centering
\begin{tabular}{| l | l | c | c |}
\cline{2-4}
\hhline{~---}
\multicolumn{1}{c|}{}% <-- added
& \multicolumn{3}{c|}{Examples}\\
\hhline{~---}
\multicolumn{1}{c|}{}% <-- added
& description & $M$ & ${\bf{u}}$\\
\hline
translation & through vector $\left(\begin{smallmatrix} 6 \\ 7 \end{smallmatrix}\right)$ & $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ & $\begin{pmatrix} 6 \\ 7 \end{pmatrix}$ \\
\hline
reflection & in line $x = 2$ & $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ & $\begin{pmatrix} 4 \\ 0 \end{pmatrix}$ \\
\hline
rotation & about ${\bf{0}}$ through $\pi$ radians & $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ & $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ \\
\hline
glide reflection & in line $y = x$, then through $\left(\begin{smallmatrix} 1 \\ 1 \end{smallmatrix}\right)$ & $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ & $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ \\
\hline
\end{tabular}
\caption{Examples of Euclidean Transformations}
\label{tab1}
\end{table}
\end{document}