我想缩放下表以适合横向模式的整个页面。
我试过:
\resizebox{\textwidth}{!}{% }
\usepackage{adjustbox}
我的代码:
\documentclass[12pt,a4paper]{report}
%This code was written by Mohcine
\usepackage[margin=1cm]{geometry}
\usepackage[french]{babel}
\usepackage{fontspec}
\usepackage{makecell}
\usepackage{adjustbox}
%\usepackage{lscape}
\usepackage{pdflscape}
\setcellgapes{5pt}
\usepackage{amsthm,amssymb,amsfonts,mathtools}
\begin{document}
\begin{landscape}
\begin{center}
\begin{table}
%\resizebox{\textwidth}{!}{%
\begin{adjustbox}{width=1\textwidth}
\makegapedcells
\begin{tabular}{ | c | *{5}{>{$\displaystyle}c<{$}|}}
\hline
Mohcine & \multicolumn{2}{c|}{Développement limité en 0 de fonctions usuelles } & \text{ Equivalents} & \text{ Développements en série entière usuels} \\ \hline
Théorème & \multicolumn{2}{c|}{$\displaystyle
f(x)\underset{{x\to a}}{=}\sum_{k=0}^{n}a_k(x-1)^{k}+o((x-a)^{n})$}
& & f(x)=\sum_{n=0}^{+\infty} a_n(x)^{n} \\
\hline
Formulaire & \multicolumn{2}{c|}{$\displaystyle
f(x)\underset{{x\to a}}{=}\sum_{k=0}^{n}a_k(x-1)^{k}+o((x-a)^{n})$}
& & f(x)=\sum_{n\geq 0} a_k(x-1)^{k} \\
\hline
Ordre & DL_{n}(0) & DL_{5}(0) & & \\
\hline
$\dfrac{1}{1-x}$ & \dfrac{1}{1-x}\underset{{x\to 0}}{=}\sum_{k=0}^{n} {x^k} +o(x^{n})
& \dfrac{1}{1-x}\underset{{x\to 0}}{=}1+x+x^2+x^3+x^4+x^5+o(x^{5}) & & \rm{R}=1,\ \forall x\in ]-1;1[\quad \dfrac{1}{1-x}=\sum_{n=0}^{+\infty} {x^n} \\
\hline
$\dfrac{1}{1+x}$ & \dfrac{1}{1+x}\underset{{x\to 0}}{=}\sum_{k=0}^{n} (-1)^{k}{x^k} +o(x^{n})
& \dfrac{1}{1+x}\underset{{x\to 0}}{=} 1-x+x^2-x^3+x^4-x^5+o(x^{5}) & & \rm{R}=1,\ \forall x\in ]-1;1[\quad \dfrac{1}{1+x}=\sum_{n=0}^{+\infty} (-1)^{n}{x^n} \\
\hline
$-\ln(1-x)$ & -\ln(1-x)\underset{{x\to 0}}{=}\sum_{k=0}^{n} \dfrac{x^{k+1}}{k+1} +o(x^{n})
& -\ln(1-x)\underset{{x\to 0}}{=} x+{\frac {x^{2}}{2}}+{\frac {x^{3}}{3}}+{\frac {x^{4}}{4}}+{\frac {x^{5}}{5}}+o(x^{5}) & & \rm{R}=1,\ \forall x\in [-1;1[\quad -\ln(1-x)=\sum_{n=0}^{+\infty} \dfrac{x^{n+1}}{n+1} \\
\hline
$\ln(1+x)$ & \ln(1+x)\underset{{x\to 0}}{=}\sum_{k=0}^{n} (-1)^{k}\dfrac{x^{k+1}}{k+1} +o(x^{n})
& \ln(1+x)\underset{{x\to 0}}{=} x-{\frac {x^{2}}{2}}+{\frac {x^{3}}{3}}-{\frac {x^{4}}{4}}+{\frac {x^{5}}{5}}+o(x^{5}) & &
{\displaystyle\rm{R}=1,\ \forall x\in ]-1;1]\quad \ln(1+x)=\sum_{n=0}^{+\infty} (-1)^{n}\dfrac{x^{n+1}}{n+1} } \\
\hline
& \multicolumn{4}{c|}{ On en déduit la somme de la série harmonique alternée $\displaystyle\quad \sum_{n=1}^{+\infty} \dfrac{(-1)^{n-1}}{n}=\ln(2)$ } \\
\hline
$\exp(x)$ & {\displaystyle {\rm {e}}^{x}\underset{{x\to 0}}{=}\sum _{k=0}^{n }{\frac {x^{k}}{k!}}+o(x^{n}) }
& {\displaystyle {\rm {e}}^{x}\underset{{x\to 0}}{=} 1+{\frac {x}{1!}}+{\frac {x^{2}}{2!}}+{\frac {x^{3}}{3!}}+{\frac {x^{4}}{4!}}+{\frac {x^{5}}{5!}}+o(x^{5})} & & {\displaystyle \rm{R}=+\infty,\ \forall x\in \mathbb{R}\quad {\rm {e}}^{x}=\sum _{n=0}^{+\infty }{\frac {x^{n}}{n!}}} \\
\hline
$\operatorname {ch} \,x$ & {\displaystyle \operatorname {ch} \,x\underset{{x\to 0}}{=}\sum _{k=0}^{n }{\frac {x^{2k}}{(2\,k)!}}+o(x^{2n}) }
& {\displaystyle \operatorname {ch} \,x\underset{{x\to 0}}{=} 1+{\frac {x^{2}}{2!}}+{\frac {x^{4}}{4!}}+o(x^{5})} & & {\displaystyle \rm{R}=+\infty,\ \forall x\in \mathbb{R}\quad ,\,\operatorname{ch} \,x=\sum _{n=0}^{+{\infty }}{\frac {x^{2n}}{(2\,n)!}}} \\
\hline
$\operatorname {sh} \,x$ & {\displaystyle \operatorname {sh} \,x\underset{{x\to 0}}{=}\sum _{k=0}^{n }{\frac {x^{2k+1}}{(2\,k+1)!}}+o(x^{2n+1}) }
& {\displaystyle \operatorname {sh} \,x\underset{{x\to 0}}{=} x+{\frac {x^{3}}{3!}}+{\frac {x^{5}}{5!}}+o(x^{5})} & & {\displaystyle \rm{R}=+\infty,\ \forall x\in \mathbb{R}\quad ,\,\operatorname{sh} \,x=\sum _{n=0}^{+{\infty }}{\frac {x^{2n+1}}{(2\,n+1)!}}} \\
\hline
$\cos \,x$ & {\displaystyle \cos \,x\underset{{x\to 0}}{=} \sum _{k=0}^{n }{(-1)^k\frac {x^{2k}}{(2\,k)!}}+o(x^{2n}) }
& {\displaystyle \cos \,x\underset{{x\to 0}}{=} 1-{\frac {x^{2}}{2!}}+{\frac {x^{4}}{4!}}+o(x^{5})}
& {\displaystyle\begin{aligned}[c] \cos \,x-1 &\underset{{x\to 0}}{\sim} -{\frac {x^{2}}{2!}}\\
1-\cos \,x &\underset{{x\to 0}}{\sim} {\frac {x^{2}}{2!}} \end{aligned}} &
{\displaystyle \rm{R}=+\infty,\ \forall x\in \mathbb{R}\quad ,\,\cos \,x=\sum _{n=0}^{+{\infty }}{(-1)^n\frac {x^{2n}}{(2\,n)!}}} \\
\hline
$\sin \,x$ & {\displaystyle \sin \,x\underset{{x\to 0}}{=} \sum _{k=0}^{n }{(-1)^k\frac {x^{2k+1}}{(2\,k+1)!}}+o(x^{2n+1}) }
& {\displaystyle \sin \,x\underset{{x\to 0}}{=} x-{\frac {x^{3}}{3!}}+{\frac {x^{5}}{5!}}+o(x^{5})} & & {\displaystyle \rm{R}=+\infty,\ \forall x\in \mathbb{R}\quad ,\,\sin \,x=\sum _{n=0}^{+{\infty }}{(-1)^n\frac {x^{2n+1}}{(2\,n+1)!}}} \\
\hline
$\arctan \,x$ & {\displaystyle \arctan \,x\underset{{x\to 0}}{=} \sum _{k=0}^{n }{(-1)^k\frac {x^{2k+1}}{(2\,k+1)}}+o(x^{2n+1}) }
& {\displaystyle \arctan \,x\underset{{x\to 0}}{=} x-{\frac {x^{3}}{3}}+{\frac {x^{5}}{5}}+o(x^{5})} & & {\displaystyle \rm{R}=1,\ \forall x\in [-1;1](x\not =\pm i)\quad ,\,\arctan \,x=\sum _{n=0}^{+{\infty }}{(-1)^n\frac {x^{2n+1}}{(2\,n+1)}}} \\
\hline
$\operatorname {arctanh} \,x$ & {\displaystyle \operatorname {arctanh} \,x\underset{{x\to 0}}{=}\sum _{k=0}^{n }{\frac {x^{2k+1}}{(2\,k+1)}}+o(x^{2n+1}) }
& {\displaystyle \operatorname {arctanh} \,x\underset{{x\to 0}}{=} x+{\frac {x^{3}}{3}}+{\frac {x^{5}}{5}}+o(x^{5})} & & {\displaystyle \rm{R}=1,\ \forall x\in ]-1;1[\quad ,\,\operatorname {arctanh} \,x=\sum _{n=0}^{+{\infty }}{\frac {x^{2n+1}}{(2\,n+1)}}} \\
\hline
\end{tabular}
%}
\end{adjustbox}
\end{table}
\end{center}
\end{landscape}
\end{document}
答案1
无需使用adjustbox
环境。最好使用\scriptsize
指令并降低 的值\setcellgapes
。
在下面的代码中,我还清理并简化了代码的各个部分。最大的变化应该在最后一列中显而易见,因为用 替换了\rm R
。\mathrm{R}
我还为用于表示开区间或半开区间的左侧边缘的\mathopen
情况提供了前缀。(默认情况下, 的数学代码是;这种区别会影响符号的解释方式:它可以是二元运算符或一元运算符。)]
]
mathclose
-
\documentclass[12pt,a4paper]{report}
%This code was written by Mohcine
\usepackage[margin=1cm]{geometry}
\usepackage[french]{babel}
\usepackage{fontspec}
\usepackage{makecell}
\usepackage{rotating}
\setcellgapes{4pt}
\usepackage{amsthm,amssymb,amsfonts,mathtools}
\DeclareMathOperator{\arctanh}{arctanh}
\DeclareMathOperator{\ch}{ch}
\DeclareMathOperator{\sh}{sh}
\newcommand{\eqx}{\mathrel{\underset{\scriptscriptstyle x\to0}{=}}}
\begin{document}
\begin{sidewaystable}
\centering
\makegapedcells
\scriptsize
\begin{tabular}{ | c | *{4}{>{$\displaystyle}c<{$}|}}
\hline
Mohcine
& \multicolumn{2}{c|}{Développement limité en $0$ de fonctions usuelles } &
\text{Equivalents} &
\text{Développements en série entière usuels} \\
\hline
Théorème &
\multicolumn{2}{c|}{$\displaystyle f(x)\underset{\scriptscriptstyle x\to a}{=} \sum_{k=0}^{n}a_k(x-1)^{k}+o\bigl((x-a)^{n}\bigr)$}
& &
f(x)=\sum_{n=0}^{+\infty} a_n(x)^{n} \\
\hline
Formulaire &
\multicolumn{2}{c|}{$\displaystyle f(x)\underset{\scriptscriptstyle x\to a}{=}\sum_{k=0}^{n}a_k(x-1)^{k}+o\bigl((x-a)^{n}\bigr)$}
& &
f(x)=\sum_{n\geq 0} a_k(x-1)^{k} \\
\hline
Ordre & DL_{n}(0) & DL_{5}(0) & & \\
\hline
$\dfrac{1}{1-x}$ &
\frac{1}{1-x}\eqx \sum_{k=0}^{n} {x^k} +o\bigl(x^{n}\bigr) &
\frac{1}{1-x}\eqx 1+x+x^2+x^3+x^4+x^5+o\bigl(x^{5}\bigr) & &
\mathrm{R}=1,\ \forall x\in \mathopen]-1;1[ \quad
\frac{1}{1-x}=\sum_{n=0}^{+\infty} {x^n} \\
\hline
$\dfrac{1}{1+x}$ &
\frac{1}{1+x}\eqx \sum_{k=0}^{n} (-1)^{k}{x^k} +o\bigl(x^{n}\bigr) &
\frac{1}{1+x}\eqx 1-x+x^2-x^3+x^4-x^5+o\bigl(x^{5}\bigr) & &
\mathrm{R}=1,\ \forall x\in \mathopen]-1;1[\quad
\frac{1}{1+x}=\sum_{n=0}^{+\infty} (-1)^{n}{x^n} \\
\hline
$-\ln(1-x)$ &
-\ln(1-x) \eqx \sum_{k=0}^{n} \frac{x^{k+1}}{k+1} +o\bigl(x^{n}\bigr)
&
-\ln(1-x)\eqx x+{\frac {x^{2}}{2}}+{\frac {x^{3}}{3}}+{\frac {x^{4}}{4}}+{\frac {x^{5}}{5}}+o\bigl(x^{5}\bigr) & &
\mathrm{R}=1,\ \forall x\in [-1;1[\quad
-\ln(1-x)=\sum_{n=0}^{+\infty} \frac{x^{n+1}}{n+1} \\
\hline
$\ln(1+x)$ &
\ln(1+x)\eqx \sum_{k=0}^{n} (-1)^{k}\frac{x^{k+1}}{k+1} +o\bigl(x^{n}\bigr) &
\ln(1+x)\eqx x-{\frac {x^{2}}{2}}+{\frac {x^{3}}{3}}-{\frac {x^{4}}{4}}+{\frac {x^{5}}{5}}+o\bigl(x^{5}\bigr) & &
\mathrm{R}=1,\ \forall x\in \mathopen]-1;1]\quad
\ln(1+x)=\sum_{n=0}^{+\infty}(-1)^{n}\frac{x^{n+1}}{n+1}\\
\hline
& \multicolumn{4}{c|}{On en déduit la somme de la série harmonique alternée $\displaystyle\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n}=\ln(2)$} \\
\hline
$\exp(x)$ &
\mathrm{e}^{x}\eqx \sum _{k=0}^{n }{\frac {x^{k}}{k!}}+o\bigl(x^{n}\bigr) &
\mathrm{e}^{x}\eqx 1+{\frac {x}{1!}}+{\frac {x^{2}}{2!}}+{\frac {x^{3}}{3!}}+{\frac {x^{4}}{4!}}+{\frac {x^{5}}{5!}}+o\bigl(x^{5}\bigr) & &
\mathrm{R}=+\infty,\ \forall x\in \mathbb{R}\quad
\mathrm{e}^{x}=\sum _{n=0}^{+\infty }{\frac {x^{n}}{n!}} \\
\hline
$\ch x$ &
\ch x\eqx \sum _{k=0}^{n }{\frac {x^{2k}}{(2k)!}}+o\bigl(x^{2n}\bigr) &
\ch x\eqx 1+{\frac {x^{2}}{2!}}+{\frac {x^{4}}{4!}}+o\bigl(x^{5}\bigr) & &
\mathrm{R}=+\infty,\ \forall x\in \mathbb{R},\quad
\ch x=\sum _{n=0}^{+{\infty }}{\frac {x^{2n}}{(2n)!}} \\
\hline
$\sh x$ &
\sh x\eqx \sum _{k=0}^{n}\frac {x^{2k+1}}{(2k+1)!} +o\bigl(x^{2n+1}\bigr) &
\sh x\eqx x+{\frac {x^{3}}{3!}}+{\frac {x^{5}}{5!}}+o\bigl(x^{5}\bigr) & &
\mathrm{R}=+\infty,\ \forall x\in \mathbb{R},\quad
\sh x=\sum _{n=0}^{+{\infty }}{\frac {x^{2n+1}}{(2n+1)!}} \\
\hline
$\cos x$ &
\cos x\eqx \sum _{k=0}^{n }{(-1)^k\frac {x^{2k}}{(2k)!}}+o\bigl(x^{2n}\bigr) &
\cos x\eqx 1-{\frac {x^{2}}{2!}}+{\frac {x^{4}}{4!}}+o\bigl(x^{5}\bigr) &
\begin{aligned}[c]
\cos x-1 &\underset{\scriptscriptstyle x\to0}{\sim} -{\frac {x^{2}}{2!}}\\
1-\cos x &\underset{\scriptscriptstyle x\to0}{\sim} {\frac {x^{2}}{2!}}
\end{aligned} &
\mathrm{R}=+\infty,\ \forall x\in \mathbb{R},\quad
\cos x=\sum _{n=0}^{+{\infty }}{(-1)^n\frac {x^{2n}}{(2n)!}} \\
\hline
$\sin x$ &
\sin x\eqx \sum _{k=0}^{n }{(-1)^k\frac {x^{2k+1}}{(2k+1)!}}+o\bigl(x^{2n+1}\bigr) &
\sin x\eqx x-{\frac {x^{3}}{3!}}+{\frac {x^{5}}{5!}}+o\bigl(x^{5}\bigr) & &
\mathrm{R}=+\infty,\ \forall x\in \mathbb{R},\quad
\sin x=\sum _{n=0}^{+{\infty }}{(-1)^n\frac {x^{2n+1}}{(2n+1)!}} \\
\hline
$\arctan x$ & \arctan x\eqx \sum _{k=0}^{n }{(-1)^k\frac {x^{2k+1}}{(2k+1)}}+o\bigl(x^{2n+1}\bigr) &
\arctan x\eqx x-{\frac {x^{3}}{3}}+{\frac {x^{5}}{5}}+o\bigl(x^{5}\bigr) & &
\mathrm{R}=1,\ \forall x\in [-1;1](x\not =\pm i),\quad
\arctan x=\sum _{n=0}^{+{\infty }}{(-1)^n\frac {x^{2n+1}}{(2n+1)}} \\
\hline
$\arctanh x$ &
\arctanh x\eqx \sum _{k=0}^{n }{\frac {x^{2k+1}}{(2k+1)}}+o\bigl(x^{2n+1}\bigr) &
\arctanh x\eqx x+{\frac {x^{3}}{3}}+{\frac {x^{5}}{5}}+o\bigl(x^{5}\bigr) & &
\mathrm{R}=1,\ \forall x\in \mathopen]-1;1[,\quad
\arctanh x=\sum _{n=0}^{+{\infty }}{\frac {x^{2n+1}}{(2n+1)}} \\
\hline
\end{tabular}
\end{sidewaystable}
\thispagestyle{empty}
\end{document}
答案2
按照此表格编码在您的文档中:我刚刚使用sidewaystable
包rotating
\begin{sidewaystable}
%\resizebox{\textwidth}{!}{%
\begin{adjustbox}{width=1\textwidth}
\makegapedcells
\begin{tabular}{ | c | *{5}{>{$\displaystyle}c<{$}|}}
\hline
Mohcine & \multicolumn{2}{c|}{Développement limité en 0 de fonctions usuelles } & \text{ Equivalents} & \text{ Développements en série entière usuels} \\ \hline
Théorème & \multicolumn{2}{c|}{$\displaystyle
f(x)\underset{{x\to a}}{=}\sum_{k=0}^{n}a_k(x-1)^{k}+o((x-a)^{n})$}
& & f(x)=\sum_{n=0}^{+\infty} a_n(x)^{n} \\
\hline
Formulaire & \multicolumn{2}{c|}{$\displaystyle
f(x)\underset{{x\to a}}{=}\sum_{k=0}^{n}a_k(x-1)^{k}+o((x-a)^{n})$}
& & f(x)=\sum_{n\geq 0} a_k(x-1)^{k} \\
\hline
Ordre & DL_{n}(0) & DL_{5}(0) & & \\
\hline
$\dfrac{1}{1-x}$ & \dfrac{1}{1-x}\underset{{x\to 0}}{=}\sum_{k=0}^{n} {x^k} +o(x^{n})
& \dfrac{1}{1-x}\underset{{x\to 0}}{=}1+x+x^2+x^3+x^4+x^5+o(x^{5}) & & \rm{R}=1,\ \forall x\in ]-1;1[\quad \dfrac{1}{1-x}=\sum_{n=0}^{+\infty} {x^n} \\
\hline
$\dfrac{1}{1+x}$ & \dfrac{1}{1+x}\underset{{x\to 0}}{=}\sum_{k=0}^{n} (-1)^{k}{x^k} +o(x^{n})
& \dfrac{1}{1+x}\underset{{x\to 0}}{=} 1-x+x^2-x^3+x^4-x^5+o(x^{5}) & & \rm{R}=1,\ \forall x\in ]-1;1[\quad \dfrac{1}{1+x}=\sum_{n=0}^{+\infty} (-1)^{n}{x^n} \\
\hline
$-\ln(1-x)$ & -\ln(1-x)\underset{{x\to 0}}{=}\sum_{k=0}^{n} \dfrac{x^{k+1}}{k+1} +o(x^{n})
& -\ln(1-x)\underset{{x\to 0}}{=} x+{\frac {x^{2}}{2}}+{\frac {x^{3}}{3}}+{\frac {x^{4}}{4}}+{\frac {x^{5}}{5}}+o(x^{5}) & & \rm{R}=1,\ \forall x\in [-1;1[\quad -\ln(1-x)=\sum_{n=0}^{+\infty} \dfrac{x^{n+1}}{n+1} \\
\hline
$\ln(1+x)$ & \ln(1+x)\underset{{x\to 0}}{=}\sum_{k=0}^{n} (-1)^{k}\dfrac{x^{k+1}}{k+1} +o(x^{n})
& \ln(1+x)\underset{{x\to 0}}{=} x-{\frac {x^{2}}{2}}+{\frac {x^{3}}{3}}-{\frac {x^{4}}{4}}+{\frac {x^{5}}{5}}+o(x^{5}) & &
{\displaystyle\rm{R}=1,\ \forall x\in ]-1;1]\quad \ln(1+x)=\sum_{n=0}^{+\infty} (-1)^{n}\dfrac{x^{n+1}}{n+1} } \\
\hline
& \multicolumn{4}{c|}{ On en déduit la somme de la série harmonique alternée $\displaystyle\quad \sum_{n=1}^{+\infty} \dfrac{(-1)^{n-1}}{n}=\ln(2)$ } \\
\hline
$\exp(x)$ & {\displaystyle {\rm {e}}^{x}\underset{{x\to 0}}{=}\sum _{k=0}^{n }{\frac {x^{k}}{k!}}+o(x^{n}) }
& {\displaystyle {\rm {e}}^{x}\underset{{x\to 0}}{=} 1+{\frac {x}{1!}}+{\frac {x^{2}}{2!}}+{\frac {x^{3}}{3!}}+{\frac {x^{4}}{4!}}+{\frac {x^{5}}{5!}}+o(x^{5})} & & {\displaystyle \rm{R}=+\infty,\ \forall x\in \mathbb{R}\quad {\rm {e}}^{x}=\sum _{n=0}^{+\infty }{\frac {x^{n}}{n!}}} \\
\hline
$\operatorname {ch} \,x$ & {\displaystyle \operatorname {ch} \,x\underset{{x\to 0}}{=}\sum _{k=0}^{n }{\frac {x^{2k}}{(2\,k)!}}+o(x^{2n}) }
& {\displaystyle \operatorname {ch} \,x\underset{{x\to 0}}{=} 1+{\frac {x^{2}}{2!}}+{\frac {x^{4}}{4!}}+o(x^{5})} & & {\displaystyle \rm{R}=+\infty,\ \forall x\in \mathbb{R}\quad ,\,\operatorname{ch} \,x=\sum _{n=0}^{+{\infty }}{\frac {x^{2n}}{(2\,n)!}}} \\
\hline
$\operatorname {sh} \,x$ & {\displaystyle \operatorname {sh} \,x\underset{{x\to 0}}{=}\sum _{k=0}^{n }{\frac {x^{2k+1}}{(2\,k+1)!}}+o(x^{2n+1}) }
& {\displaystyle \operatorname {sh} \,x\underset{{x\to 0}}{=} x+{\frac {x^{3}}{3!}}+{\frac {x^{5}}{5!}}+o(x^{5})} & & {\displaystyle \rm{R}=+\infty,\ \forall x\in \mathbb{R}\quad ,\,\operatorname{sh} \,x=\sum _{n=0}^{+{\infty }}{\frac {x^{2n+1}}{(2\,n+1)!}}} \\
\hline
$\cos \,x$ & {\displaystyle \cos \,x\underset{{x\to 0}}{=} \sum _{k=0}^{n }{(-1)^k\frac {x^{2k}}{(2\,k)!}}+o(x^{2n}) }
& {\displaystyle \cos \,x\underset{{x\to 0}}{=} 1-{\frac {x^{2}}{2!}}+{\frac {x^{4}}{4!}}+o(x^{5})}
& {\displaystyle\begin{aligned}[c] \cos \,x-1 &\underset{{x\to 0}}{\sim} -{\frac {x^{2}}{2!}}\\
1-\cos \,x &\underset{{x\to 0}}{\sim} {\frac {x^{2}}{2!}} \end{aligned}} &
{\displaystyle \rm{R}=+\infty,\ \forall x\in \mathbb{R}\quad ,\,\cos \,x=\sum _{n=0}^{+{\infty }}{(-1)^n\frac {x^{2n}}{(2\,n)!}}} \\
\hline
$\sin \,x$ & {\displaystyle \sin \,x\underset{{x\to 0}}{=} \sum _{k=0}^{n }{(-1)^k\frac {x^{2k+1}}{(2\,k+1)!}}+o(x^{2n+1}) }
& {\displaystyle \sin \,x\underset{{x\to 0}}{=} x-{\frac {x^{3}}{3!}}+{\frac {x^{5}}{5!}}+o(x^{5})} & & {\displaystyle \rm{R}=+\infty,\ \forall x\in \mathbb{R}\quad ,\,\sin \,x=\sum _{n=0}^{+{\infty }}{(-1)^n\frac {x^{2n+1}}{(2\,n+1)!}}} \\
\hline
$\arctan \,x$ & {\displaystyle \arctan \,x\underset{{x\to 0}}{=} \sum _{k=0}^{n }{(-1)^k\frac {x^{2k+1}}{(2\,k+1)}}+o(x^{2n+1}) }
& {\displaystyle \arctan \,x\underset{{x\to 0}}{=} x-{\frac {x^{3}}{3}}+{\frac {x^{5}}{5}}+o(x^{5})} & & {\displaystyle \rm{R}=1,\ \forall x\in [-1;1](x\not =\pm i)\quad ,\,\arctan \,x=\sum _{n=0}^{+{\infty }}{(-1)^n\frac {x^{2n+1}}{(2\,n+1)}}} \\
\hline
$\operatorname {arctanh} \,x$ & {\displaystyle \operatorname {arctanh} \,x\underset{{x\to 0}}{=}\sum _{k=0}^{n }{\frac {x^{2k+1}}{(2\,k+1)}}+o(x^{2n+1}) }
& {\displaystyle \operatorname {arctanh} \,x\underset{{x\to 0}}{=} x+{\frac {x^{3}}{3}}+{\frac {x^{5}}{5}}+o(x^{5})} & & {\displaystyle \rm{R}=1,\ \forall x\in ]-1;1[\quad ,\,\operatorname {arctanh} \,x=\sum _{n=0}^{+{\infty }}{\frac {x^{2n+1}}{(2\,n+1)}}} \\
\hline
\end{tabular}
%}
\end{adjustbox}
\end{sidewaystable}
\usepackage{rotating}
使用前言部分的编码。