我怎样才能排列这个具有更大边界的方程,类似于下图中的例子?
我尝试过的:
\[\begin{split}\max_{\{W^{*}_{h,t}\}}E_{t}\sum_{s=0}^{\infty}(\xi_w \beta)^s\Biggl[\phi_{t+s}(1-\tau^w_{t+s})\mu^s_t\Pi^s_t W^{\star}_{h,t}\Biggl(\frac{\mu^s_t\Pi^s_t W^{\star}_{h,t}}{W_{t+s}}\biggr)^{\frac{\lambda_{w,t+s}}{1-\lambda_{w,t+s}}}H_ {t+s}\\%-\frac{\zeta^L_{t+s}}{1+\sigma_l}\Biggl(\biggl(\frac{\mu^s_t\Pi^s_t W^{\star}_{h,t+s}}{W_{t+s}}\biggr)^{\frac{\lambda_{w,t+s}}{1-\lambda_{w,t+s}}}H_{t+s}\Biggr)^{1+\sigma_l}\Biggr]\end{split}\]
但我得到了:
答案1
\documentclass{article}
\usepackage{amsmath}
\begin{document}
\[
\max_{\{W^{*}_{h,t}\}}E_{t}\sum_{s=0}^{\infty}(\xi_w \beta)^s\left[
\begin{array}{c}
\phi_{t+s}(1-\tau^w_{t+s})\mu^s_t\Pi^s_t W^{\star}_{h,t}\Biggl(\frac{\mu^s_t\Pi^s_t
W^{\star}_{h,t}}{W_{t+s}}\biggr)^{\frac{\lambda_{w,t+s}}{1-\lambda_{w,t+s}}}H_ {t+s}
\\
-\frac{\zeta^L_{t+s}}{1+\sigma_l}\Biggl(\biggl(\frac{\mu^s_t\Pi^s_t
W^{\star}_{h,t+s}}{W_{t+s}}\biggr)^{\frac{\lambda_{w,t+s}}{1-\lambda_{w,t+s}}}H_{t+s}\Biggr)^{1+\sigma_l}
\end{array}
\right]
\]
\end{document}
答案2
而是split
使用multlined
inside \left[ ...\right]
。
\documentclass{article}
\usepackage{mathtools}
\begin{document}
\[
\max_{\{W^{*}_{h,t}\}}E_{t}\sum_{s=0}^{\infty}(\xi_w \beta)^s
\left[\begin{multlined}[0.75\textwidth]
\phi_{t+s}(1-\tau^w_{t+s})\mu^s_t\Pi^s_t W^{\star}_{h,t}
\left(\frac{\mu^s_t\Pi^s_t W^{\star}_{h,t}}{W_{t+s}}
\right)^{\frac{\lambda_{w,t+s}}{1-\lambda_{w,t+s}}}H_ {t+s}\\[1ex]
%
-\frac{\zeta^L_{t+s}}{1+\sigma_l}
\left(\left(\frac{\mu^s_t\Pi^s_t W^{\star}_{h,t+s}}{W_{t+s}}
\right)^{\frac{\lambda_{w,t+s}}{1-\lambda_{w,t+s}}}
H_{t+s}\right)^{1+\sigma_l}
\end{multlined}\right]
\]
\end{document}
答案3
您可以使用来自的代码mathtools
来定义可以跨行分隔的成对分隔符。我调用了命令\brbracket
。带星号的版本添加了一个隐式\left … \right
对。
\documentclass{article}
\usepackage[utf8]{inputenc}
\usepackage{mathtools}
\usepackage{lmodern}
\newcommand\MTkillspecial[1]{% helper macro
\bgroup
\catcode`\&=9
\let\\\relax%
\scantokens{#1}%
\egroup
}
\DeclarePairedDelimiter\brbracket \lbrack \rbrack
\reDeclarePairedDelimiterInnerWrapper\brbracket{star}{
\mathopen{#1\vphantom{\MTkillspecial{#2}}\kern-\nulldelimiterspace\right.}
#2
\mathclose{\left.\kern-\nulldelimiterspace\vphantom{\MTkillspecial{#2}}#3}}
\begin{document}
\[ \begin{split}\max_{\{W^{*}_{h,t}\}}E_{t}\sum_{s=0}^{\infty}(\xi_w \beta)^s\brbracket*{\phi_{t+s}(1-\tau^w_{t+s})\mu^s_t\Pi^s_t W^{\star}_{h,t}\Biggl(\frac{\mu^s_t\Pi^s_t W^{\star}_{h,t}}{W_{t+s}}\biggr)^{\frac{\lambda_{w,t+s}}{1-\lambda_{w,t+s}}}H_ {t+s} & \\-\frac{\zeta^L_{t+s}}{1+\sigma_l}\Biggl(\biggl(\frac{\mu^s_t\Pi^s_t W^{\star}_{h,t+s}}{W_{t+s}}\biggr)^{\frac{\lambda_{w,t+s}}{1-\lambda_{w,t+s}}}H_{t+s}\Biggr)^{1+\sigma_l} & }\end{split}\]
\end{document}
答案4
我认为您正在寻找的是 2 行multline*
环境或 2 行bmatrix
环境——您发布的屏幕截图和编写的代码对于什么是正确的留下了一些歧义。
\documentclass{article}
\usepackage{amsmath}
% define macros for some recurring items
\newcommand\terma{\mu^s_t\Pi^s_t W^{\star}_{\!h,t}}
\newcommand\termb{\frac{\lambda_{w,t+s}}{1-\lambda_{w,t+s}}}
\newcommand\termc{\biggl(\frac{\terma}{W_{t+s}}
\biggr)^{\!\!\termb}H_{t+s}}
\begin{document}
\begin{multline*}
\max_{\{W^{*}_{\!h,t}\}} E_{t} \sum_{s=0}^{\infty}(\xi_w \beta)^s
\left[\phi_{t+s}(1-\tau^w_{t+s}) \terma\termc \right.\\
\left.{} -\frac{\zeta^L_{t+s}}{1+\sigma_l} \Biggl(\termc\Biggr)^{\!\!1+\sigma_l}\right]
\end{multline*}
\[
\max_{\{W^{*}_{\!h,t}\}} E_{t} \sum_{s=0}^{\infty}(\xi_w \beta)^s
\begin{bmatrix}
\displaystyle
\phi_{t+s}(1-\tau^w_{t+s}) \terma\termc \\[3ex]
\displaystyle
-\frac{\zeta^L_{t+s}}{1+\sigma_l} \Biggl(\termc\Biggr)^{\!\!1+\sigma_l}
\end{bmatrix}
\]
\end{document}