TikZ:如何在不显着增加所需内存的情况下获得平滑的表面图

TikZ:如何在不显着增加所需内存的情况下获得平滑的表面图

我想生成使用 matlab2tikz 创建的平滑曲面图。但是,如果我使用所需的文档,内存[shader = faceted interp]将从[shader = flat corner]34KB 增加到大约 3000 KB。

是否有可能使用更少的内存来生成插值表面颜色?

这是由 matlab2tikz 生成的 TikZ 代码:

\setlength\figureheight{5cm}
\setlength\figurewidth{5cm} 


\begin{tikzpicture}
\begin{axis}[%
width=0.951\figurewidth,
height=\figureheight,
at={(0\figurewidth,0\figureheight)},
scale only axis,
xmin=0,
xmax=2,
tick align=outside,
xlabel style={font=\color{white!15!black}},
xlabel={x},
ymin=0,
ymax=2,
ylabel style={font=\color{white!15!black}},
ylabel={y},
zmin=0.7,
zmax=1.1,
zlabel style={font=\color{white!15!black}},
zlabel={z},
view={83.7}{27.6},
axis background/.style={fill=white},
axis x line*=bottom,
axis y line*=left,
axis z line*=left,
xmajorgrids,
ymajorgrids,
zmajorgrids
]

\addplot3[%
surf,
%shader=faceted interp, faceted color=black, colormap={mymap}{[1pt] %% needs a lot space and slow down pdf
shader=flat corner, draw=black, z buffer=sort, colormap={mymap}{[1pt]
    rgb(0pt)=(0.2081,0.1663,0.5292); rgb(1pt)=(0.211624,0.189781,0.577676); rgb(2pt)=(0.212252,0.213771,0.626971); rgb(3pt)=(0.2081,0.2386,0.677086); rgb(4pt)=(0.195905,0.264457,0.7279); rgb(5pt)=(0.170729,0.291938,0.779248); rgb(6pt)=(0.125271,0.324243,0.830271); rgb(7pt)=(0.0591333,0.359833,0.868333); rgb(8pt)=(0.0116952,0.38751,0.881957); rgb(9pt)=(0.00595714,0.408614,0.882843); rgb(10pt)=(0.0165143,0.4266,0.878633); rgb(11pt)=(0.0328524,0.443043,0.871957); rgb(12pt)=(0.0498143,0.458571,0.864057); rgb(13pt)=(0.0629333,0.47369,0.855438); rgb(14pt)=(0.0722667,0.488667,0.8467); rgb(15pt)=(0.0779429,0.503986,0.838371); rgb(16pt)=(0.0793476,0.520024,0.831181); rgb(17pt)=(0.0749429,0.537543,0.826271); rgb(18pt)=(0.0640571,0.556986,0.823957); rgb(19pt)=(0.0487714,0.577224,0.822829); rgb(20pt)=(0.0343429,0.596581,0.819852); rgb(21pt)=(0.0265,0.6137,0.8135); rgb(22pt)=(0.0238905,0.628662,0.803762); rgb(23pt)=(0.0230905,0.641786,0.791267); rgb(24pt)=(0.0227714,0.653486,0.776757); rgb(25pt)=(0.0266619,0.664195,0.760719); rgb(26pt)=(0.0383714,0.674271,0.743552); rgb(27pt)=(0.0589714,0.683757,0.725386); rgb(28pt)=(0.0843,0.692833,0.706167); rgb(29pt)=(0.113295,0.7015,0.685857); rgb(30pt)=(0.145271,0.709757,0.664629); rgb(31pt)=(0.180133,0.717657,0.642433); rgb(32pt)=(0.217829,0.725043,0.619262); rgb(33pt)=(0.258643,0.731714,0.595429); rgb(34pt)=(0.302171,0.737605,0.571186); rgb(35pt)=(0.348167,0.742433,0.547267); rgb(36pt)=(0.395257,0.7459,0.524443); rgb(37pt)=(0.44201,0.748081,0.503314); rgb(38pt)=(0.487124,0.749062,0.483976); rgb(39pt)=(0.530029,0.749114,0.466114); rgb(40pt)=(0.570857,0.748519,0.44939); rgb(41pt)=(0.609852,0.747314,0.433686); rgb(42pt)=(0.6473,0.7456,0.4188); rgb(43pt)=(0.683419,0.743476,0.404433); rgb(44pt)=(0.71841,0.741133,0.390476); rgb(45pt)=(0.752486,0.7384,0.376814); rgb(46pt)=(0.785843,0.735567,0.363271); rgb(47pt)=(0.818505,0.732733,0.34979); rgb(48pt)=(0.850657,0.7299,0.336029); rgb(49pt)=(0.882433,0.727433,0.3217); rgb(50pt)=(0.913933,0.725786,0.306276); rgb(51pt)=(0.944957,0.726114,0.288643); rgb(52pt)=(0.973895,0.731395,0.266648); rgb(53pt)=(0.993771,0.745457,0.240348); rgb(54pt)=(0.999043,0.765314,0.216414); rgb(55pt)=(0.995533,0.786057,0.196652); rgb(56pt)=(0.988,0.8066,0.179367); rgb(57pt)=(0.978857,0.827143,0.163314); rgb(58pt)=(0.9697,0.848138,0.147452); rgb(59pt)=(0.962586,0.870514,0.1309); rgb(60pt)=(0.958871,0.8949,0.113243); rgb(61pt)=(0.959824,0.921833,0.0948381); rgb(62pt)=(0.9661,0.951443,0.0755333); rgb(63pt)=(0.9763,0.9831,0.0538)}, mesh/rows=20]
table[row sep=crcr, point meta=\thisrow{c}] {%
    %
    x   y   z   c\\
    0.1 0.1 0.978841075217739   0.978841075217739\\
    0.1 0.2 0.90998429116849    0.90998429116849\\
    0.1 0.3 0.84264491860518    0.84264491860518\\
    0.1 0.4 0.822508193647424   0.822508193647424\\
    0.1 0.5 0.825031045419041   0.825031045419041\\
    0.1 0.6 0.839296294190743   0.839296294190743\\
    0.1 0.7 0.854739323543296   0.854739323543296\\
    0.1 0.8 0.873187961726909   0.873187961726909\\
    0.1 0.9 0.878136537605571   0.878136537605571\\
    0.1 1   0.898159781327697   0.898159781327697\\
    0.1 1.1 0.915302440665068   0.915302440665068\\
    0.1 1.2 0.921384089450824   0.921384089450824\\
    0.1 1.3 0.942018006411024   0.942018006411024\\
    0.1 1.4 0.960927126006636   0.960927126006636\\
    0.1 1.5 0.980016318329441   0.980016318329441\\
    0.1 1.6 0.999172510007288   0.999172510007288\\
    0.1 1.7 1.02055958265134    1.02055958265134\\
    0.1 1.8 1.04245974720617    1.04245974720617\\
    0.1 1.9 1.0611756436709     1.0611756436709\\
    0.1 2   1.08304405264348    1.08304405264348\\
    0.2 0.1 0.901517592937543   0.901517592937543\\
    0.2 0.2 0.845308244886481   0.845308244886481\\
    0.2 0.3 0.812389191861843   0.812389191861843\\
    0.2 0.4 0.80674080950615    0.80674080950615\\
    0.2 0.5 0.814264175227832   0.814264175227832\\
    0.2 0.6 0.827230555363258   0.827230555363258\\
    0.2 0.7 0.849345314854172   0.849345314854172\\
    0.2 0.8 0.86386095216901    0.86386095216901\\
    0.2 0.9 0.869070006138945   0.869070006138945\\
    0.2 1   0.893694183833425   0.893694183833425\\
    0.2 1.1 0.900051213790277   0.900051213790277\\
    0.2 1.2 0.917140765673604   0.917140765673604\\
    0.2 1.3 0.938685870862939   0.938685870862939\\
    0.2 1.4 0.962161430012622   0.962161430012622\\
    0.2 1.5 0.975926478340179   0.975926478340179\\
    0.2 1.6 0.998569582335257   0.998569582335257\\
    0.2 1.7 1.02464897196027    1.02464897196027\\
    0.2 1.8 1.03927757515357    1.03927757515357\\
    0.2 1.9 1.06049698036121    1.06049698036121\\
    0.2 2   1.0825261428323     1.0825261428323\\
    0.3 0.1 0.840108237457957   0.840108237457957\\
    0.3 0.2 0.81074249893045    0.81074249893045\\
    0.3 0.3 0.787694162734884   0.787694162734884\\
    0.3 0.4 0.778155797185172   0.778155797185172\\
    0.3 0.5 0.795764863079293   0.795764863079293\\
    0.3 0.6 0.801148911384305   0.801148911384305\\
    0.3 0.7 0.825000718709587   0.825000718709587\\
    0.3 0.8 0.842325496362006   0.842325496362006\\
    0.3 0.9 0.852678673500759   0.852678673500759\\
    0.3 1   0.876176428665697   0.876176428665697\\
    0.3 1.1 0.894293671109834   0.894293671109834\\
    0.3 1.2 0.908654860197797   0.908654860197797\\
    0.3 1.3 0.939816241843869   0.939816241843869\\
    0.3 1.4 0.957774759147845   0.957774759147845\\
    0.3 1.5 0.974336058782874   0.974336058782874\\
    0.3 1.6 0.996556384387772   0.996556384387772\\
    0.3 1.7 1.02090246978518    1.02090246978518\\
    0.3 1.8 1.0347269265277 1.0347269265277\\
    0.3 1.9 1.05426463203764    1.05426463203764\\
    0.3 2   1.07765728904274    1.07765728904274\\
    0.4 0.1 0.806044093483461   0.806044093483461\\
    0.4 0.2 0.783666254821702   0.783666254821702\\
    0.4 0.3 0.768073822199392   0.768073822199392\\
    0.4 0.4 0.759954611857678   0.759954611857678\\
    0.4 0.5 0.770758619081365   0.770758619081365\\
    0.4 0.6 0.777579011944236   0.777579011944236\\
    0.4 0.7 0.801063474151775   0.801063474151775\\
    0.4 0.8 0.81554730984072    0.81554730984072\\
    0.4 0.9 0.838862096700037   0.838862096700037\\
    0.4 1   0.864517116101439   0.864517116101439\\
    0.4 1.1 0.884832843903749   0.884832843903749\\
    0.4 1.2 0.902876045937127   0.902876045937127\\
    0.4 1.3 0.922053510642663   0.922053510642663\\
    0.4 1.4 0.949054241524677   0.949054241524677\\
    0.4 1.5 0.96845673508519    0.96845673508519\\
    0.4 1.6 0.998185751415727   0.998185751415727\\
    0.4 1.7 1.02110017629038    1.02110017629038\\
    0.4 1.8 1.03274150757595    1.03274150757595\\
    0.4 1.9 1.05823172569181    1.05823172569181\\
    0.4 2   1.07487227105116    1.07487227105116\\
    0.5 0.1 0.786221538440771   0.786221538440771\\
    0.5 0.2 0.76114307300512    0.76114307300512\\
    0.5 0.3 0.742287262086799   0.742287262086799\\
    0.5 0.4 0.737496156695126   0.737496156695126\\
    0.5 0.5 0.747143245047922   0.747143245047922\\
    0.5 0.6 0.767751341050701   0.767751341050701\\
    0.5 0.7 0.789479918321806   0.789479918321806\\
    0.5 0.8 0.81201778996086    0.81201778996086\\
    0.5 0.9 0.82982883997617    0.82982883997617\\
    0.5 1   0.856644097100447   0.856644097100447\\
    0.5 1.1 0.877086361732628   0.877086361732628\\
    0.5 1.2 0.895129007326909   0.895129007326909\\
    0.5 1.3 0.919948311388728   0.919948311388728\\
    0.5 1.4 0.939205155814864   0.939205155814864\\
    0.5 1.5 0.958121108057538   0.958121108057538\\
    0.5 1.6 0.99330891429114    0.99330891429114\\
    0.5 1.7 1.00974618575332    1.00974618575332\\
    0.5 1.8 1.02755504703871    1.02755504703871\\
    0.5 1.9 1.04766230637917    1.04766230637917\\
    0.5 2   1.0726790376252 1.0726790376252\\
    0.6 0.1 0.767520626143775   0.767520626143775\\
    0.6 0.2 0.742031835458354   0.742031835458354\\
    0.6 0.3 0.731720410171416   0.731720410171416\\
    0.6 0.4 0.728388656103022   0.728388656103022\\
    0.6 0.5 0.739944071974886   0.739944071974886\\
    0.6 0.6 0.75788436010147    0.75788436010147\\
    0.6 0.7 0.783668342121399   0.783668342121399\\
    0.6 0.8 0.798410431908164   0.798410431908164\\
    0.6 0.9 0.825185453651715   0.825185453651715\\
    0.6 1   0.847950200459786   0.847950200459786\\
    0.6 1.1 0.866422060891867   0.866422060891867\\
    0.6 1.2 0.891701058193423   0.891701058193423\\
    0.6 1.3 0.914615830783623   0.914615830783623\\
    0.6 1.4 0.930364345587849   0.930364345587849\\
    0.6 1.5 0.954816779153812   0.954816779153812\\
    0.6 1.6 0.991526677196553   0.991526677196553\\
    0.6 1.7 1.00715278305568    1.00715278305568\\
    0.6 1.8 1.02314281122654    1.02314281122654\\
    0.6 1.9 1.04575866066752    1.04575866066752\\
    0.6 2   1.06934114281413    1.06934114281413\\
    0.7 0.1 0.748377681905337   0.748377681905337\\
    0.7 0.2 0.733124349714245   0.733124349714245\\
    0.7 0.3 0.721516592031303   0.721516592031303\\
    0.7 0.4 0.72318232286585    0.72318232286585\\
    0.7 0.5 0.735229316401413   0.735229316401413\\
    0.7 0.6 0.752186007949691   0.752186007949691\\
    0.7 0.7 0.775501490842304   0.775501490842304\\
    0.7 0.8 0.794955936908431   0.794955936908431\\
    0.7 0.9 0.820001704265096   0.820001704265096\\
    0.7 1   0.841983066781254   0.841983066781254\\
    0.7 1.1 0.86536354549422    0.86536354549422\\
    0.7 1.2 0.884018750197522   0.884018750197522\\
    0.7 1.3 0.913991283172279   0.913991283172279\\
    0.7 1.4 0.930936780617865   0.930936780617865\\
    0.7 1.5 0.954497280390417   0.954497280390417\\
    0.7 1.6 0.982937188367808   0.982937188367808\\
    0.7 1.7 1.0011981622668 1.0011981622668\\
    0.7 1.8 1.01853548211128    1.01853548211128\\
    0.7 1.9 1.04234119170029    1.04234119170029\\
    0.7 2   1.06487576399598    1.06487576399598\\
    0.8 0.1 0.738615607994289   0.738615607994289\\
    0.8 0.2 0.725833008539767   0.725833008539767\\
    0.8 0.3 0.716739347356482   0.716739347356482\\
    0.8 0.4 0.719975228738095   0.719975228738095\\
    0.8 0.5 0.731956799531611   0.731956799531611\\
    0.8 0.6 0.748189949947983   0.748189949947983\\
    0.8 0.7 0.769921047439094   0.769921047439094\\
    0.8 0.8 0.793983477447599   0.793983477447599\\
    0.8 0.9 0.815703547121726   0.815703547121726\\
    0.8 1   0.840228003206245   0.840228003206245\\
    0.8 1.1 0.863124156665619   0.863124156665619\\
    0.8 1.2 0.882416970126478   0.882416970126478\\
    0.8 1.3 0.908172671660765   0.908172671660765\\
    0.8 1.4 0.927914172996887   0.927914172996887\\
    0.8 1.5 0.955265592439137   0.955265592439137\\
    0.8 1.6 0.974701706486713   0.974701706486713\\
    0.8 1.7 0.998643334841134   0.998643334841134\\
    0.8 1.8 1.01573531811547    1.01573531811547\\
    0.8 1.9 1.0375239915276 1.0375239915276\\
    0.8 2   1.06180544430015    1.06180544430015\\
    0.9 0.1 0.73381325159502    0.73381325159502\\
    0.9 0.2 0.722696741614367   0.722696741614367\\
    0.9 0.3 0.713356842388709   0.713356842388709\\
    0.9 0.4 0.719115164750297   0.719115164750297\\
    0.9 0.5 0.728668834649488   0.728668834649488\\
    0.9 0.6 0.74726467783588    0.74726467783588\\
    0.9 0.7 0.769320004068283   0.769320004068283\\
    0.9 0.8 0.790917732508032   0.790917732508032\\
    0.9 0.9 0.814120121395352   0.814120121395352\\
    0.9 1   0.838178654970782   0.838178654970782\\
    0.9 1.1 0.858124482308035   0.858124482308035\\
    0.9 1.2 0.880892394673511   0.880892394673511\\
    0.9 1.3 0.90871921844365    0.90871921844365\\
    0.9 1.4 0.929978350395919   0.929978350395919\\
    0.9 1.5 0.953000394001449   0.953000394001449\\
    0.9 1.6 0.970867006274554   0.970867006274554\\
    0.9 1.7 0.99662847116877    0.99662847116877\\
    0.9 1.8 1.01222237661281    1.01222237661281\\
    0.9 1.9 1.035138248292  1.035138248292\\
    0.9 2   1.05632756969827    1.05632756969827\\
    1   0.1 0.731570088242015   0.731570088242015\\
    1   0.2 0.720959334316133   0.720959334316133\\
    1   0.3 0.712203003551029   0.712203003551029\\
    1   0.4 0.716766659011145   0.716766659011145\\
    1   0.5 0.726282678157855   0.726282678157855\\
    1   0.6 0.745457784700382   0.745457784700382\\
    1   0.7 0.765746912021968   0.765746912021968\\
    1   0.8 0.788100219682612   0.788100219682612\\
    1   0.9 0.810481162330993   0.810481162330993\\
    1   1   0.836284160200144   0.836284160200144\\
    1   1.1 0.853703760819099   0.853703760819099\\
    1   1.2 0.879650436231888   0.879650436231888\\
    1   1.3 0.906547755206366   0.906547755206366\\
    1   1.4 0.923620729633152   0.923620729633152\\
    1   1.5 0.953369733648842   0.953369733648842\\
    1   1.6 0.971580615939404   0.971580615939404\\
    1   1.7 0.995247740283718   0.995247740283718\\
    1   1.8 1.01071377299285    1.01071377299285\\
    1   1.9 1.03336329955949    1.03336329955949\\
    1   2   1.05411382247168    1.05411382247168\\
    1.1 0.1 0.730620840194746   0.730620840194746\\
    1.1 0.2 0.719076031318867   0.719076031318867\\
    1.1 0.3 0.712307187674868   0.712307187674868\\
    1.1 0.4 0.717775972819857   0.717775972819857\\
    1.1 0.5 0.727467387173488   0.727467387173488\\
    1.1 0.6 0.743908928357703   0.743908928357703\\
    1.1 0.7 0.763624727955782   0.763624727955782\\
    1.1 0.8 0.786224189102775   0.786224189102775\\
    1.1 0.9 0.806828676042996   0.806828676042996\\
    1.1 1   0.837389405734421   0.837389405734421\\
    1.1 1.1 0.853887223307221   0.853887223307221\\
    1.1 1.2 0.878161960878753   0.878161960878753\\
    1.1 1.3 0.904389239042539   0.904389239042539\\
    1.1 1.4 0.925876918179837   0.925876918179837\\
    1.1 1.5 0.952405247590915   0.952405247590915\\
    1.1 1.6 0.968411682330186   0.968411682330186\\
    1.1 1.7 0.99490159383852    0.99490159383852\\
    1.1 1.8 1.01223255704789    1.01223255704789\\
    1.1 1.9 1.03384571496621    1.03384571496621\\
    1.1 2   1.05315220054647    1.05315220054647\\
    1.2 0.1 0.729906459904575   0.729906459904575\\
    1.2 0.2 0.720213978720516   0.720213978720516\\
    1.2 0.3 0.713087529542312   0.713087529542312\\
    1.2 0.4 0.71751619037312    0.71751619037312\\
    1.2 0.5 0.727711233967286   0.727711233967286\\
    1.2 0.6 0.742147909156799   0.742147909156799\\
    1.2 0.7 0.762227481703253   0.762227481703253\\
    1.2 0.8 0.784009917781053   0.784009917781053\\
    1.2 0.9 0.803941492605094   0.803941492605094\\
    1.2 1   0.834653008889183   0.834653008889183\\
    1.2 1.1 0.854510891788164   0.854510891788164\\
    1.2 1.2 0.876528683896908   0.876528683896908\\
    1.2 1.3 0.902638964000437   0.902638964000437\\
    1.2 1.4 0.924609165199364   0.924609165199364\\
    1.2 1.5 0.951730811283202   0.951730811283202\\
    1.2 1.6 0.967226112704261   0.967226112704261\\
    1.2 1.7 0.993545172168392   0.993545172168392\\
    1.2 1.8 1.00778226972188    1.00778226972188\\
    1.2 1.9 1.03234910180213    1.03234910180213\\
    1.2 2   1.05212019287219    1.05212019287219\\
    1.3 0.1 0.729651064625984   0.729651064625984\\
    1.3 0.2 0.720020669871435   0.720020669871435\\
    1.3 0.3 0.712698507671128   0.712698507671128\\
    1.3 0.4 0.717592060724005   0.717592060724005\\
    1.3 0.5 0.726685735621494   0.726685735621494\\
    1.3 0.6 0.7414075741957 0.7414075741957\\
    1.3 0.7 0.76151861649234    0.76151861649234\\
    1.3 0.8 0.784421764161607   0.784421764161607\\
    1.3 0.9 0.802436307470162   0.802436307470162\\
    1.3 1   0.830201609200774   0.830201609200774\\
    1.3 1.1 0.852774280284818   0.852774280284818\\
    1.3 1.2 0.876471284765236   0.876471284765236\\
    1.3 1.3 0.903750809778979   0.903750809778979\\
    1.3 1.4 0.923387317829927   0.923387317829927\\
    1.3 1.5 0.950684066004776   0.950684066004776\\
    1.3 1.6 0.968377881135496   0.968377881135496\\
    1.3 1.7 0.994258733062232   0.994258733062232\\
    1.3 1.8 1.00713010645702    1.00713010645702\\
    1.3 1.9 1.03088069294213    1.03088069294213\\
    1.3 2   1.0508829618822 1.0508829618822\\
    1.4 0.1 0.730500352397979   0.730500352397979\\
    1.4 0.2 0.718632453408666   0.718632453408666\\
    1.4 0.3 0.714918794234679   0.714918794234679\\
    1.4 0.4 0.718076851201417   0.718076851201417\\
    1.4 0.5 0.727298596713765   0.727298596713765\\
    1.4 0.6 0.740853706219955   0.740853706219955\\
    1.4 0.7 0.760955054102585   0.760955054102585\\
    1.4 0.8 0.782730556156467   0.782730556156467\\
    1.4 0.9 0.804521236090417   0.804521236090417\\
    1.4 1   0.829300952859081   0.829300952859081\\
    1.4 1.1 0.850258446081032   0.850258446081032\\
    1.4 1.2 0.872242886771831   0.872242886771831\\
    1.4 1.3 0.905701939103503   0.905701939103503\\
    1.4 1.4 0.925019558857037   0.925019558857037\\
    1.4 1.5 0.950890385480101   0.950890385480101\\
    1.4 1.6 0.967382013106045   0.967382013106045\\
    1.4 1.7 0.992097384003499   0.992097384003499\\
    1.4 1.8 1.00784770485417    1.00784770485417\\
    1.4 1.9 1.03019014002333    1.03019014002333\\
    1.4 2   1.05125342460208    1.05125342460208\\
    1.5 0.1 0.730476396722479   0.730476396722479\\
    1.5 0.2 0.719693682459182   0.719693682459182\\
    1.5 0.3 0.714896787701737   0.714896787701737\\
    1.5 0.4 0.716002996175453   0.716002996175453\\
    1.5 0.5 0.728765621095059   0.728765621095059\\
    1.5 0.6 0.742758786185624   0.742758786185624\\
    1.5 0.7 0.761716274808384   0.761716274808384\\
    1.5 0.8 0.787757986106999   0.787757986106999\\
    1.5 0.9 0.804491117272064   0.804491117272064\\
    1.5 1   0.827471797723261   0.827471797723261\\
    1.5 1.1 0.851350386823121   0.851350386823121\\
    1.5 1.2 0.86984021176277    0.86984021176277\\
    1.5 1.3 0.902036031517553   0.902036031517553\\
    1.5 1.4 0.925354176597143   0.925354176597143\\
    1.5 1.5 0.949006814107748   0.949006814107748\\
    1.5 1.6 0.969285808974643   0.969285808974643\\
    1.5 1.7 0.993112771302155   0.993112771302155\\
    1.5 1.8 1.00799673047704    1.00799673047704\\
    1.5 1.9 1.02859321865792    1.02859321865792\\
    1.5 2   1.05154113735594    1.05154113735594\\
    1.6 0.1 0.730911754267116   0.730911754267116\\
    1.6 0.2 0.720152867892698   0.720152867892698\\
    1.6 0.3 0.714752056139892   0.714752056139892\\
    1.6 0.4 0.71634666992016    0.71634666992016\\
    1.6 0.5 0.727388886833378   0.727388886833378\\
    1.6 0.6 0.741506758734714   0.741506758734714\\
    1.6 0.7 0.762659163521951   0.762659163521951\\
    1.6 0.8 0.786175783608803   0.786175783608803\\
    1.6 0.9 0.803967039786284   0.803967039786284\\
    1.6 1   0.825736221914219   0.825736221914219\\
    1.6 1.1 0.849467310689363   0.849467310689363\\
    1.6 1.2 0.871473109288985   0.871473109288985\\
    1.6 1.3 0.899097016378464   0.899097016378464\\
    1.6 1.4 0.927050519335375   0.927050519335375\\
    1.6 1.5 0.951431675326978   0.951431675326978\\
    1.6 1.6 0.969335058695662   0.969335058695662\\
    1.6 1.7 0.989438712866357   0.989438712866357\\
    1.6 1.8 1.00423639535899    1.00423639535899\\
    1.6 1.9 1.02900498343802    1.02900498343802\\
    1.6 2   1.05028628944502    1.05028628944502\\
    1.7 0.1 0.730459434943053   0.730459434943053\\
    1.7 0.2 0.721365418585205   0.721365418585205\\
    1.7 0.3 0.716735469169561   0.716735469169561\\
    1.7 0.4 0.716761673809011   0.716761673809011\\
    1.7 0.5 0.72755085135993    0.72755085135993\\
    1.7 0.6 0.742775034155235   0.742775034155235\\
    1.7 0.7 0.762427035313333   0.762427035313333\\
    1.7 0.8 0.785179598509921   0.785179598509921\\
    1.7 0.9 0.804805851234325   0.804805851234325\\
    1.7 1   0.825512089444753   0.825512089444753\\
    1.7 1.1 0.848032218476023   0.848032218476023\\
    1.7 1.2 0.871428612072256   0.871428612072256\\
    1.7 1.3 0.899283669888992   0.899283669888992\\
    1.7 1.4 0.926456900442393   0.926456900442393\\
    1.7 1.5 0.950117793183889   0.950117793183889\\
    1.7 1.6 0.972041303047067   0.972041303047067\\
    1.7 1.7 0.986181225377735   0.986181225377735\\
    1.7 1.8 1.00495695672613    1.00495695672613\\
    1.7 1.9 1.02942373856282    1.02942373856282\\
    1.7 2   1.05022469602013    1.05022469602013\\
    1.8 0.1 0.731487432373451   0.731487432373451\\
    1.8 0.2 0.721416346731888   0.721416346731888\\
    1.8 0.3 0.716073712866048   0.716073712866048\\
    1.8 0.4 0.717428803100937   0.717428803100937\\
    1.8 0.5 0.72809459427456    0.72809459427456\\
    1.8 0.6 0.743685903615773   0.743685903615773\\
    1.8 0.7 0.763012652668265   0.763012652668265\\
    1.8 0.8 0.785261207603871   0.785261207603871\\
    1.8 0.9 0.803232968929889   0.803232968929889\\
    1.8 1   0.827854586452875   0.827854586452875\\
    1.8 1.1 0.846445408405946   0.846445408405946\\
    1.8 1.2 0.872798437757348   0.872798437757348\\
    1.8 1.3 0.900170826305474   0.900170826305474\\
    1.8 1.4 0.926144369722088   0.926144369722088\\
    1.8 1.5 0.949946370304815   0.949946370304815\\
    1.8 1.6 0.971462169977234   0.971462169977234\\
    1.8 1.7 0.986993547690452   0.986993547690452\\
    1.8 1.8 1.00300293740142    1.00300293740142\\
    1.8 1.9 1.02825546045441    1.02825546045441\\
    1.8 2   1.05176722522217    1.05176722522217\\
    1.9 0.1 0.731095209216224   0.731095209216224\\
    1.9 0.2 0.723167947004703   0.723167947004703\\
    1.9 0.3 0.717018231543776   0.717018231543776\\
    1.9 0.4 0.717707450024319   0.717707450024319\\
    1.9 0.5 0.727149005941049   0.727149005941049\\
    1.9 0.6 0.744324056868581   0.744324056868581\\
    1.9 0.7 0.762165184632656   0.762165184632656\\
    1.9 0.8 0.784229097616837   0.784229097616837\\
    1.9 0.9 0.802399228052846   0.802399228052846\\
    1.9 1   0.829167560468727   0.829167560468727\\
    1.9 1.1 0.845477699188085   0.845477699188085\\
    1.9 1.2 0.87210245543755    0.87210245543755\\
    1.9 1.3 0.898783085497325   0.898783085497325\\
    1.9 1.4 0.926238114509552   0.926238114509552\\
    1.9 1.5 0.949998594496938   0.949998594496938\\
    1.9 1.6 0.969847020390359   0.969847020390359\\
    1.9 1.7 0.985576870467398   0.985576870467398\\
    1.9 1.8 1.00018701172911    1.00018701172911\\
    1.9 1.9 1.02848499486974    1.02848499486974\\
    1.9 2   1.05075018358905    1.05075018358905\\
    2   0.1 0.731078731242849   0.731078731242849\\
    2   0.2 0.723521614329132   0.723521614329132\\
    2   0.3 0.717354996469584   0.717354996469584\\
    2   0.4 0.719720087745422   0.719720087745422\\
    2   0.5 0.72882756535578    0.72882756535578\\
    2   0.6 0.744558002043      0.744558002043\\
    2   0.7 0.761128830450552   0.761128830450552\\
    2   0.8 0.780972828699559   0.780972828699559\\
    2   0.9 0.802890635242991   0.802890635242991\\
    2   1   0.829618224048972   0.829618224048972\\
    2   1.1 0.84858175160681    0.84858175160681\\
    2   1.2 0.873504870959474   0.873504870959474\\
    2   1.3 0.897737070201995   0.897737070201995\\
    2   1.4 0.928325986934544   0.928325986934544\\
    2   1.5 0.948529565257845   0.948529565257845\\
    2   1.6 0.969759923128393   0.969759923128393\\
    2   1.7 0.987995797325095   0.987995797325095\\
    2   1.8 1.0027068901142     1.0027068901142\\
    2   1.9 1.02862381066553    1.02862381066553\\
    2   2   1.04930221905372    1.04930221905372\\
};
\end{axis}

\end{tikzpicture}

答案1

pgfplots 手册在第 139 页对此发出警告:

原则上,这个想法本身并没有什么问题,而且看起来也不错——但它会大大扩大生成的 PDF 文档,并且可能需要很长时间才能渲染

后来,它给出了一种解决方法:

对于正交图(如 view={0}{90}),如果使用两个单独的 \addplot 命令,可以以较低的成本获得分面插值的效果:一个使用 surf,一个使用 mesh。请谨慎处理此选择。

使用这个技巧,我制作了下面的图表,它只有 41K(使用 pdflatex 生成的 pdf,standalone类):

结果

为此,我将您的表格数据复制到单独的data.txt文件中,删除\\每行末尾的,然后在文档中输入以下命令:

\pgfplotstableread{data.txt}\data

这使我能够重复使用两个图(表面和网格)的数据:

\begin{tikzpicture}
\begin{axis}[% options omitted
]
\addplot3[surf,
   shader=interp, colormap={mymap}{[1pt] % long colormap omitted
   }, mesh/rows=20]
   table {\data};
\addplot3[mesh,mesh/rows=20, color=black]
   table {\data};
\end{axis}
\end{tikzpicture}

请注意,我删除了point meta=\thisrow{c},因为当从外部文件加载表时它不起作用,而且我不知道这个选项的含义(我不是 pgfplots 的常规用户)。

答案2

为了直接从 Matlab 获取所示的解决方案,我现在分割了图。

Matlab代码:

figure    
surf (xData, yData, zData, 'EdgeColor', 'none', 'FaceColor', 'interp')
hold on
mesh (xData, yData, zData, 'EdgeColor', 'black', 'FaceColor', 'none')

matlab2tikz (...)

相关内容