如何将方程式拆分到不同页面

如何将方程式拆分到不同页面

在数组中添加大量方程式时,页面分割存在问题。这是一个有问题的示例,

\documentclass[12pt,a4paper]{report}
\usepackage[left=2.5 cm,right=2.5 cm,top=3.5 cm,bottom=3.5 cm]{geometry}
\usepackage{amssymb,amsmath}
\usepackage{slashed,cancel}
\usepackage{hyperref}
\usepackage{setspace}
\usepackage{appendix}
\usepackage{color,colortbl}
\usepackage[table]{xcolor}
%%% footnote
\usepackage{fancyhdr}
\usepackage{changepage}
%%change head foot font
\fancyhf{}
\newcommand{\changefont}{\fontsize{7}{9}\selectfont} %% change font size in header
\renewcommand{\subsectionmark}[1]{\markright{\MakeUppercase{   \thesubsection\ #1}}} % header layout for subsection
\fancyhead[LE,RO]{\thepage}
\fancyhead[LO]{\color{gray}\changefont\slshape\rightmark}
\fancyhead[RE]{\leftmark}
%% for Bjornstrup
\usepackage[Bjornstrup]{fncychap}
\ChNumVar{\fontsize{76}{80}\usefont{OT1}{pzc}{m}{n}\selectfont}
\ChTitleUpperCase
\ChTitleVar{\LARGE\bf\centering}
\hypersetup{
    colorlinks=true, %set true if you want colored links
    linktoc=all,     %set to all if you want both sections and subsections linked
    linkcolor=blue,  %choose some color if you want links to stand out
    urlcolor=blue
}
\begin{document}
%% redefine page header
\fancyhead[R]{ \fontsize{12}{12} \textbar\ {\bf \thepage} }
\pagestyle{fancy}
\doublespacing

\begin{appendices}
\chapter{}
\section{This is A}
Below we present some important relations followed by the generators    $(T_{ij}^{a})$ and structure constants $(f^{abc})$ of $SU(3)_{c}$.
\begin{equation}
\begin{aligned}
\text{Tr}(T^{a} T^{b})                   &= \frac{1}{2} \delta^{ab}\\
\text{Tr}(T^{a} T^{b} T^{c})             &= \frac{1}{4} (d^{abc} +i   f^{abc})\\
\text{Tr}(T^{a} T^{b} T^{a} T^{c})       &= -\frac{1}{4N} \delta^{bc}\\
T^{a}_{ij}T^{a}_{kl}                     &= \frac{1}{2} \Big(     \delta_{il}\delta_{jk} - \frac{1}{N} \delta_{ij}\delta_{kl} \Big)\\
T^{a}_{ij}T^{a}_{jk}                     &= \frac{N^{2}-1}{2N}   \delta_{ik}\\
f^{abc}                                  &= -2i \text{Tr}(T^{a} . [T^{b},T^{c}])\\
f^{acd} f^{bcd}                          &= N \delta^{ab}\\
f^{ade}f^{bef}f^{cfd}                    &= \frac{N}{2} f^{abc}\\
d^{abc}                                  &= 2 \text{Tr}(T^{a} .   [T^{b},T^{c}])\\
\{T^{a}, T^{b} \}                        &= \frac{1}{N}\delta^{ab} +d^{abc} T^{c}\\
T^{a}T^{b}                               &= \frac{1}{2} \Big( \frac{1}{N}\delta^{ab} + (d^{abc} +i f^{abc}) T^{c} \Big)\\
\text{Tr}(T^{a}T^{b}T^{c})               &= \frac{1}{4} (d^{abc} +i   f^{abc})\\
%\iffalse
f^{acd}d^{bcd}                           &= 0\\
%\fi
\end{aligned}
\end{equation}
$d^{abc}$ is known as the symmetric structure constant and for QCD $N=3$.
\end{appendices}

\end{document}

删除 \doublespacing 或从数组中删除一个方程式不会出现此问题。有没有什么解决方案可以解决这个问题?

答案1

好的,这里有另一个答案,解决了 OP 的担忧:

\documentclass{article}

\usepackage{amsmath}
\usepackage{lipsum}
\allowdisplaybreaks
\begin{document}


\lipsum[1-3]
\stepcounter{equation}
\begin{align*}
\text{Tr}(T^{a} T^{b})                   &= \frac{1}{2} \delta^{ab}\\
\text{Tr}(T^{a} T^{b} T^{c})             &= \frac{1}{4} (d^{abc} +i   f^{abc})\\
\text{Tr}(T^{a} T^{b} T^{a} T^{c})       &= -\frac{1}{4N} \delta^{bc}\\
T^{a}_{ij}T^{a}_{kl}                     &= \frac{1}{2} \Big(     \delta_{il}\delta_{jk} - \frac{1}{N} \delta_{ij}\delta_{kl} \Big)\\
T^{a}_{ij}T^{a}_{jk}                     &= \frac{N^{2}-1}{2N}   \delta_{ik}\\
f^{abc}                                  &= -2i \text{Tr}(T^{a} . [T^{b},T^{c}])\\
f^{acd} f^{bcd}                          &= N \delta^{ab} \tag{\theequation}\label{boo}\\
f^{ade}f^{bef}f^{cfd}                    &= \frac{N}{2} f^{abc}\\
d^{abc}                                  &= 2 \text{Tr}(T^{a} .   [T^{b},T^{c}])\\
\{T^{a}, T^{b} \}                        &= \frac{1}{N}\delta^{ab} +d^{abc} T^{c}\\
T^{a}T^{b}                               &= \frac{1}{2} \Big( \frac{1}{N}\delta^{ab} + (d^{abc} +i f^{abc}) T^{c} \Big)\\
\text{Tr}(T^{a}T^{b}T^{c})               &= \frac{1}{4} (d^{abc} +i   f^{abc})\\
%\iffalse
f^{acd}d^{bcd}                           &= 0
%\fi
\end{align*}

\eqref{boo}
\end{document}

答案2

虽然不优雅,但是有效......

问题在于,人们可能会破坏跨多个页面的某些显示环境(例如多行、对齐),但不会在方程内对齐。 \allowdisplaybreaks在这里与和一起提供align帮助\notag

\documentclass[12pt,a4paper]{report}
\usepackage[left=2.5 cm,right=2.5 cm,top=3.5 cm,bottom=3.5 cm]{geometry}
\usepackage{amssymb,amsmath}
\usepackage{slashed,cancel}
\usepackage{hyperref}
\usepackage{setspace}
\usepackage{appendix}
\usepackage{color,colortbl}
\usepackage[table]{xcolor}
%%% footnote
\usepackage{fancyhdr}
\usepackage{changepage}
%%change head foot font
\fancyhf{}
\newcommand{\changefont}{\fontsize{7}{9}\selectfont} %% change font size in header
\renewcommand{\subsectionmark}[1]{\markright{\MakeUppercase{   \thesubsection\ #1}}} % header layout for subsection
\fancyhead[LE,RO]{\thepage}
\fancyhead[LO]{\color{gray}\changefont\slshape\rightmark}
\fancyhead[RE]{\leftmark}
%% for Bjornstrup
\usepackage[Bjornstrup]{fncychap}
\ChNumVar{\fontsize{76}{80}\usefont{OT1}{pzc}{m}{n}\selectfont}
\ChTitleUpperCase
\ChTitleVar{\LARGE\bf\centering}
\hypersetup{
    colorlinks=true, %set true if you want colored links
    linktoc=all,     %set to all if you want both sections and subsections linked
    linkcolor=blue,  %choose some color if you want links to stand out
    urlcolor=blue
}

\fancyhead[R]{ \fontsize{12}{12} \textbar\ {\bf \thepage} }
\pagestyle{fancy}
\doublespacing
\allowdisplaybreaks 


\begin{document}
%% redefine page header

\begin{appendices}
\chapter{}
\section{This is A}
Below we present some important relations followed by the generators    $(T_{ij}^{a})$ and structure constants $(f^{abc})$ of $SU(3)_{c}$.
\begin{align}
\text{Tr}(T^{a} T^{b})                   &= \frac{1}{2} \delta^{ab}\notag\\
\text{Tr}(T^{a} T^{b} T^{c})             &= \frac{1}{4} (d^{abc} +i   f^{abc})\notag\\
\text{Tr}(T^{a} T^{b} T^{a} T^{c})       &= -\frac{1}{4N} \delta^{bc}\notag\\
T^{a}_{ij}T^{a}_{kl}                     &= \frac{1}{2} \Big(     \delta_{il}\delta_{jk} - \frac{1}{N} \delta_{ij}\delta_{kl} \Big)\notag\\
T^{a}_{ij}T^{a}_{jk}                     &= \frac{N^{2}-1}{2N}   \delta_{ik}\notag\\
f^{abc}                                  &= -2i \text{Tr}(T^{a} . [T^{b},T^{c}])\notag\\
f^{acd} f^{bcd}                          &= N \delta^{ab}\\
f^{ade}f^{bef}f^{cfd}                    &= \frac{N}{2} f^{abc}\notag\\
d^{abc}                                  &= 2 \text{Tr}(T^{a} .   [T^{b},T^{c}])\notag\\
\{T^{a}, T^{b} \}                        &= \frac{1}{N}\delta^{ab} +d^{abc} T^{c}\notag\\
T^{a}T^{b}                               &= \frac{1}{2} \Big( \frac{1}{N}\delta^{ab} + (d^{abc} +i f^{abc}) T^{c} \Big)\notag\\
\text{Tr}(T^{a}T^{b}T^{c})               &= \frac{1}{4} (d^{abc} +i   f^{abc})\notag\\
%\iffalse
f^{acd}d^{bcd}                           &= 0\notag
%\fi
\end{align}
$d^{abc}$ is known as the symmetric structure constant and for QCD $N=3$.
\end{appendices}

\end{document}

相关内容