\documentclass[11pt]{article}
\usepackage[utf8]{inputenc}
\usepackage{amsfonts}
\usepackage{amsmath}
\usepackage{amsthm}
\usepackage{amssymb}
\renewcommand{\qedsymbol}{$\blacksquare$}
\newcommand*{\QEDA}{\hfill\ensuremath{\blacksquare}}%
\begin{document}
\begin{proof}
Since $x_k$ is only conditionally summable, this means that the
sequence $s_n = \sum\limits_{k=1}^{n}|x_k|$ is not convergent. Note
that $s_n$ is a monotone increasing sequence that is not convergent,
hence it must be unbounded. But
$\sigma_n^+ = \sum\limits_{k=1}^{n}x_k^+$ and
$\sigma_n^- = \sum\limits_{k=1}^{n}x_^-$ are all subsequences of
$s_n$, and they are monotone increasing as well. Thus, they must me
also unbounded and
$\sum\limits_{k=1}^{\infty}x_k^+ = \infty =
\sum\limits_{k=1}^{\infty}x_k^-$.
\end{proof}
\end{document}
当我尝试运行我的代码时出现以下错误,但我真的找不到我的代码有什么错误。
! Missing { inserted.
<to be read again>
^
l.19 $\sigma_n^- = \sum\limits_{k=1}^{n}x_^
-$ are all subsequences of
?
答案1
值得注意的是,在这种情况下,错误消息会告诉您代码中的问题所在
! Missing { inserted.
<to be read again>
^
l.19 $\sigma_n^- = \sum\limits_{k=1}^{n}x_^
-$ are all subsequences of
?
在 LaTeX 遇到问题的地方,这条线断了。
x_^-
是你的问题,尽管我认为没有在下标和上标周围加上括号可能无助于解决问题。这是这里时常出现的问题,我经常建议你始终使用括号,即使是单字符的下标/上标,即:x_{k}
。这确实有点难以输入,并且可以说括号是不必要的混乱。另一方面,它确实使我更容易进行视觉解析,并且当你意识到应该是时,你永远不会遇到忘记在上标周围加上括号的问题x^n
。x^{n + 1}
这是一个很好的习惯,我认为x_{k}^{+}
比更有意义x_k^+
。每个人都有自己的想法,但只是需要考虑的事情。
无论如何,如果我们应用 Christian Hupfer 建议的修正在评论中:
$\sigma_n^- = \sum\limits_{k=1}^{n}x_k^-$ are all subsequences of
例如:
\documentclass[11pt]{article}
\usepackage[utf8]{inputenc}
\usepackage{amsfonts}
\usepackage{amsmath}
\usepackage{amsthm}
\usepackage{amssymb}
\renewcommand{\qedsymbol}{$\blacksquare$}
\newcommand*{\QEDA}{\hfill\ensuremath{\blacksquare}}%
\begin{document}
\begin{proof}
Since $x_k$ is only conditionally summable, this means that the
sequence $s_n = \sum\limits_{k=1}^{n}|x_k|$ is not convergent. Note
that $s_n$ is a monotone increasing sequence that is not convergent,
hence it must be unbounded. But
$\sigma_n^+ = \sum\limits_{k=1}^{n}x_k^+$ and
%% problem line below %%
$\sigma_n^- = \sum\limits_{k=1}^{n}x_k^-$ are all subsequences of
%% problem line above %%
$s_n$, and they are monotone increasing as well. Thus, they must me
also unbounded and
$\sum\limits_{k=1}^{\infty}x_k^+ = \infty =
\sum\limits_{k=1}^{\infty}x_k^-$.
\end{proof}
\end{document}
一切都很好。不过,我还是建议您不要再普遍使用\limits
。内联数学模式将下标和上标放在一边,这是有充分理由的,那就是保持一致的行距,并在行间留出适当的空白。