\begin{equation}
Q_{sp}=\left\{\stackrel{\frac{\kappa_{0}\kappa_{1}\dots \kappa_{Zp-1}}{\mu_{1}\mu_{2}\dots\mu_{Zp} (1+\sum^{n}_{l=1} \frac{\kappa_{0}\kappa_{1}
\dots \kappa_{l-1}}{\mu_{1}\mu_{2}\dots \mu_{l}})} \dots 1\leq Zp\leq number\_pol}{\frac{1}{1+\sum^{n}_{l=1}\frac{\kappa_{0}\kappa_{1}
\dots \kappa_{l-1}}{\mu_{1}\mu_{2}\dots \mu_{l}}} \dots Zp=0}
\end{equation}
我如何解决只用一个荣誉来写而不犯这个错误的问题
!Missing \right. inserted
答案1
来自 AMSmath 包手册第 8 页的示例。
\documentclass{article}
\usepackage{amsmath}
\begin{document}
\begin{equation*}
\left.
\begin{aligned}
B’&=-\partial\times E,\\
E’&=\partial\times B - 4\pi j,
\end{aligned}
\right\}
\qquad \text{Maxwell’s equations}
\end{equation*}
\end{document}
用你的方程解:
\documentclass{article}
\usepackage{amsmath}
\begin{document}
\begin{equation}
Q_{sp}=\left\{\stackrel{\frac{\kappa_{0}\kappa_{1}\dots \kappa_{Zp-1}}{\mu_{1}\mu_{2}\dots\mu_{Zp} (1+\sum^{n}_{l=1} \frac{\kappa_{0}\kappa_{1}\dots \kappa_{l-1}}{\mu_{1}\mu_{2}\dots \mu_{l}})} \dots 1\leq Zp\leq number\_pol}{\frac{1}{1+\sum^{n}_{l=1}\frac{\kappa_{0}\kappa_{1} \dots \kappa_{l-1}}{\mu_{1}\mu_{2}\dots \mu_{l}}} \dots Zp=0}\right.
\end{equation}
\end{document}
答案2
这是一个解决方案dcases
,并对垂直间距进行了一些改进:
\documentclass{article}
\usepackage[utf8]{inputenc}
\usepackage{lmodern}
\usepackage{mathtools}
\begin{document}
\begin{equation}
Q_{sp}=\begin{dcases}\stackrel{\frac{\kappa_{0}\kappa_{1} ... \kappa_{Zp-1}}{\mu_{1}\mu_{2} ... \mu_{Zp} \bigl(1+\sum^n_{l=1} \frac{\kappa_{0}\kappa_{1}
\dotsm \kappa_{l-1}\mathstrut}{\mu_{1}\mu_{2} ... \mu_{l}}\bigr)} ... 1\leq Zp\leq \text{number\_pol}}{\frac{\strut1}{1+\sum^n_{l=1}\frac{\kappa_{0}\kappa_{1}
... \kappa_{l-1}}{\mu_{1}\mu_{2} ... \mu_{l}}} ... Zp=0}
\end{dcases}
\end{equation}
\end{document}