我已经从 Mathematica 中的 beamer 框架中复制了一个数学表达式。
这个等式太长了,虽然我把它分成几行,并用加号分隔,但仍然不适合框架。
我已经尝试了在这里找到的所有方法,我将方程式放在中minipage
,然后将其调整为文本宽度,甚至我还用放大了框架,\geometry
但这些对我来说都不起作用。
这\geometry
将改变我所有其他的框架,但我不想这样。
此外,我希望等式与框架的左侧对齐,但我不知道该怎么做。
这是我的代码:
\documentclass{beamer}
\begin{document}
\begin{frame}
the scattering amplitude
\resizebox{\textwidth}{!}{
\begin{minipage}[]{\textwidth}
\large{
\begin{eqnarray}
\frac{2 \left(\text{tr} \left(\text{e}^4 \left(m_e-\bar{\gamma }\cdot \bar{K}\right).\left(\bar{\gamma }\cdot \bar{\varepsilon }\left(\text{k}_2\right)\right).\left(\bar{\gamma }\cdot \left(-\overline{\text{k}_2}-\bar{K}\right)+m_e\right).\left(\bar{\gamma }\cdot \bar{\varepsilon }^*\left(\text{q}_2\right)\right).\left(\bar{\gamma }\cdot \left(-\overline{\text{k}_2}-\bar{K}+\overline{\text{q}_2}\right)+m_e\right).\left(\bar{\gamma }\cdot \bar{\varepsilon }^*\left(\text{q}_1\right)\right).\left(\bar{\gamma }\cdot \left(-\overline{\text{k}_2}-\bar{K}+\overline{\text{q}_1}+\overline{\text{q}_2}\right)+m_e\right).\left(\bar{\gamma }\cdot \bar{\varepsilon }\left(\text{k}_1\right)\right)\right)\right)}
{\left(\bar{K}^2-m_e^2\right).\left(\left(\overline{\text{k}_2}+\bar{K}\right){}^2-m_e^2\right).\left(\left(\overline{\text{k}_2}+\bar{K}-\overline{\text{q}_2}\right){}^2-m_e^2\right).\left(\left(\overline{\text{k}_2}+\bar{K}-\overline{\text{q}_1}-\overline{\text{q}_2}\right){}^2-m_e^2\right)}
+\frac{2 \left(\text{tr} \left(\text{e}^4 \left(\bar{\gamma }\cdot \left(\overline{\text{k}_2}+\bar{K}-\overline{\text{q}_1}-\overline{\text{q}_2}\right)+m_e\right).\left(\bar{\gamma }\cdot \bar{\varepsilon }^*\left(\text{q}_2\right)\right).\left(\bar{\gamma }\cdot \left(\overline{\text{k}_2}+\bar{K}-\overline{\text{q}_1}\right)+m_e\right).\left(\bar{\gamma }\cdot \bar{\varepsilon }\left(\text{k}_2\right)\right).\left(\bar{\gamma }\cdot \left(\bar{K}-\overline{\text{q}_1}\right)+m_e\right).\left(\bar{\gamma }\cdot \bar{\varepsilon }^*\left(\text{q}_1\right)\right).\left(\bar{\gamma }\cdot \bar{K}+m_e\right).\left(\bar{\gamma }\cdot \bar{\varepsilon }\left(\text{k}_1\right)\right)\right)\right)}
{\left(\bar{K}^2-m_e^2\right).\left(\left(\bar{K}-\overline{\text{q}_1}\right){}^2-m_e^2\right).\left(\left(\overline{\text{k}_2}+\bar{K}-\overline{\text{q}_1}\right){}^2-m_e^2\right).\left(\left(\overline{\text{k}_2}+\bar{K}-\overline{\text{q}_1}-\overline{\text{q}_2}\right){}^2-m_e^2\right)}
+\frac{2 \left(\text{tr} \left(\text{e}^4 \left(\bar{\gamma }\cdot \left(\overline{\text{k}_2}+\bar{K}-\overline{\text{q}_1}-\overline{\text{q}_2}\right)+m_e\right).\left(\bar{\gamma }\cdot \bar{\varepsilon }^*\left(\text{q}_2\right)\right).\left(\bar{\gamma }\cdot \left(\overline{\text{k}_2}+\bar{K}-\overline{\text{q}_1}\right)+m_e\right).\left(\bar{\gamma }\cdot \bar{\varepsilon }^*\left(\text{q}_1\right)\right).\left(\bar{\gamma }\cdot \left(\overline{\text{k}_2}+\bar{K}\right)+m_e\right).\left(\bar{\gamma }\cdot \bar{\varepsilon }\left(\text{k}_2\right)\right).\left(\bar{\gamma }\cdot \bar{K}+m_e\right).\left(\bar{\gamma }\cdot \bar{\varepsilon }\left(\text{k}_1\right)\right)\right)\right)}
{\left(\bar{K}^2-m_e^2\right).\left(\left(\overline{\text{k}_2}+\bar{K}\right){}^2-m_e^2\right).\left(\left(\overline{\text{k}_2}+\bar{K}-\overline{\text{q}_1}\right){}^2-m_e^2\right).\left(\left(\overline{\text{k}_2}+\bar{K}-\overline{\text{q}_1}-\overline{\text{q}_2}\right){}^2-m_e^2\right)}
\end{eqnarray}
}
\end{minipage}
}
\end{frame}
\end{document}
在这里,正如您所看到的,我没有对页面进行任何拆分或放大。
所以也许你可以开始教我如何正确地分割表达式。
答案1
如果你要展示这个庞大的数学表达式,你应该让你的观众有机会至少了解一些细节。整个等式有 3 个加法部分,每个部分都由分子和分母都非常长的分数组成。我建议你将每个分子分成 3 行,将每个分母分成 2 行。
请注意,我删除了所有 78\left
条指令、所有 78\right
条指令、所有 24\cdot
条指令以及许多其他.
(点)项。它们根本不属于排版良好的数学表达式。我也可以删除其他括号组,这些括号组似乎只是为了方便 Mathematica,但我选择让它休息一下。不过,我确实添加了大括号来括住多行分子和分母项。
\documentclass{beamer}
\usepackage{amsmath}
\DeclareMathOperator{\tr}{tr} % trace operator?
\begin{document}
\begin{frame}
\footnotesize % <--- yes, this is needed
\begin{align*}
&\frac{\left(\begin{aligned}
2 \tr \bigl[&\text{e}^4 (m_e-\bar{\gamma} \bar{K})(\bar{\gamma} \bar{\varepsilon}(\text{k}_2))(\bar{\gamma} (-\overline{\text{k}_2}-\bar{K})+m_e)(\bar{\gamma} \bar{\varepsilon}^*(\text{q}_2))\\
&\times(\bar{\gamma} (-\overline{\text{k}_2}-\bar{K}+\overline{\text{q}_2})+m_e)(\bar{\gamma} \bar{\varepsilon}^*(\text{q}_1))\\
&\times(\bar{\gamma} (-\overline{\text{k}_2}-\bar{K}+\overline{\text{q}_1}+\overline{\text{q}_2})+m_e)(\bar{\gamma} \bar{\varepsilon}(\text{k}_1))\bigr]
\end{aligned}\right)}%
{\left(\begin{aligned}
&(\bar{K}^2-m_e^2)((\overline{\text{k}_2}+\bar{K})^2-m_e^2)\\
&\times((\overline{\text{k}_2}+\bar{K}-\overline{\text{q}_2})^2-m_e^2)((\overline{\text{k}_2}+\bar{K}-\overline{\text{q}_1}-\overline{\text{q}_2})^2-m_e^2)
\end{aligned}\right)}\\[1ex]
{}+{}
&\frac{\left(\begin{aligned}
2 \tr \bigl[&\text{e}^4 (\bar{\gamma} (\overline{\text{k}_2}+\bar{K}-\overline{\text{q}_1}-\overline{\text{q}_2})+m_e)(\bar{\gamma} \bar{\varepsilon}^*(\text{q}_2))\\
&\times(\bar{\gamma} (\overline{\text{k}_2}+\bar{K}-\overline{\text{q}_1})+m_e)(\bar{\gamma} \bar{\varepsilon}(\text{k}_2))(\bar{\gamma} (\bar{K}-\overline{\text{q}_1})+m_e)\\
&\times(\bar{\gamma} \bar{\varepsilon}^*(\text{q}_1))(\bar{\gamma} \bar{K}+m_e)(\bar{\gamma} \bar{\varepsilon}(\text{k}_1))\bigr]
\end{aligned}\right)}%
{\left(\begin{aligned}
&(\bar{K}^2-m_e^2)((\bar{K}-\overline{\text{q}_1})^2-m_e^2)\\
&\times((\overline{\text{k}_2}+\bar{K}-\overline{\text{q}_1})^2-m_e^2)((\overline{\text{k}_2}+\bar{K}-\overline{\text{q}_1}-\overline{\text{q}_2})^2-m_e^2)
\end{aligned}\right)}\\[1ex]
{}+{}&
\frac{\left(\begin{aligned}
2 \tr \bigl[&\text{e}^4 (\bar{\gamma} (\overline{\text{k}_2}+\bar{K}-\overline{\text{q}_1}-\overline{\text{q}_2})+m_e)(\bar{\gamma} \bar{\varepsilon}^*(\text{q}_2))\\
&\times(\bar{\gamma} (\overline{\text{k}_2}+\bar{K}-\overline{\text{q}_1})+m_e)(\bar{\gamma} \bar{\varepsilon}^*(\text{q}_1))\\
&\times(\bar{\gamma} (\overline{\text{k}_2}+\bar{K})+m_e)(\bar{\gamma} \bar{\varepsilon}(\text{k}_2))(\bar{\gamma} \bar{K}+m_e)(\bar{\gamma} \bar{\varepsilon}(\text{k}_1))\bigr]
\end{aligned}\right)}%
{\left(\begin{aligned}
&(\bar{K}^2-m_e^2)((\overline{\text{k}_2}+\bar{K})^2-m_e^2)\\
&\times((\overline{\text{k}_2}+\bar{K}-\overline{\text{q}_1})^2-m_e^2)((\overline{\text{k}_2}+\bar{K}-\overline{\text{q}_1}-\overline{\text{q}_2})^2-m_e^2)
\end{aligned}\right)}
\end{align*}
\end{frame}
\end{document}
答案2
不确定这有多大用处:
\documentclass{beamer}
\begin{document}
\begin{frame}[shrink=60]
\begin{align*}
&\frac{2 \left(\text{tr} \left(\text{e}^4 \left(m_e-\bar{\gamma }\cdot \bar{K}\right).\left(\bar{\gamma }\cdot \bar{\varepsilon }\left(\text{k}_2\right)\right).\left(\bar{\gamma }\cdot \left(-\overline{\text{k}_2}-\bar{K}\right)+m_e\right).\left(\bar{\gamma }\cdot \bar{\varepsilon }^*\left(\text{q}_2\right)\right).\left(\bar{\gamma }\cdot \left(-\overline{\text{k}_2}-\bar{K}+\overline{\text{q}_2}\right)+m_e\right).\left(\bar{\gamma }\cdot \bar{\varepsilon }^*\left(\text{q}_1\right)\right).\left(\bar{\gamma }\cdot \left(-\overline{\text{k}_2}-\bar{K}+\overline{\text{q}_1}+\overline{\text{q}_2}\right)+m_e\right).\left(\bar{\gamma }\cdot \bar{\varepsilon }\left(\text{k}_1\right)\right)\right)\right)}{\left(\bar{K}^2-m_e^2\right).\left(\left(\overline{\text{k}_2}+\bar{K}\right){}^2-m_e^2\right).\left(\left(\overline{\text{k}_2}+\bar{K}-\overline{\text{q}_2}\right){}^2-m_e^2\right).\left(\left(\overline{\text{k}_2}+\bar{K}-\overline{\text{q}_1}-\overline{\text{q}_2}\right){}^2-m_e^2\right)}+\\
+&\frac{2 \left(\text{tr} \left(\text{e}^4 \left(\bar{\gamma }\cdot \left(\overline{\text{k}_2}+\bar{K}-\overline{\text{q}_1}-\overline{\text{q}_2}\right)+m_e\right).\left(\bar{\gamma }\cdot \bar{\varepsilon }^*\left(\text{q}_2\right)\right).\left(\bar{\gamma }\cdot \left(\overline{\text{k}_2}+\bar{K}-\overline{\text{q}_1}\right)+m_e\right).\left(\bar{\gamma }\cdot \bar{\varepsilon }\left(\text{k}_2\right)\right).\left(\bar{\gamma }\cdot \left(\bar{K}-\overline{\text{q}_1}\right)+m_e\right).\left(\bar{\gamma }\cdot \bar{\varepsilon }^*\left(\text{q}_1\right)\right).\left(\bar{\gamma }\cdot \bar{K}+m_e\right).\left(\bar{\gamma }\cdot \bar{\varepsilon }\left(\text{k}_1\right)\right)\right)\right)}{\left(\bar{K}^2-m_e^2\right).\left(\left(\bar{K}-\overline{\text{q}_1}\right){}^2-m_e^2\right).\left(\left(\overline{\text{k}_2}+\bar{K}-\overline{\text{q}_1}\right){}^2-m_e^2\right).\left(\left(\overline{\text{k}_2}+\bar{K}-\overline{\text{q}_1}-\overline{\text{q}_2}\right){}^2-m_e^2\right)}+\\
+&\frac{2 \left(\text{tr} \left(\text{e}^4 \left(\bar{\gamma }\cdot \left(\overline{\text{k}_2}+\bar{K}-\overline{\text{q}_1}-\overline{\text{q}_2}\right)+m_e\right).\left(\bar{\gamma }\cdot \bar{\varepsilon }^*\left(\text{q}_2\right)\right).\left(\bar{\gamma }\cdot \left(\overline{\text{k}_2}+\bar{K}-\overline{\text{q}_1}\right)+m_e\right).\left(\bar{\gamma }\cdot \bar{\varepsilon }^*\left(\text{q}_1\right)\right).\left(\bar{\gamma }\cdot \left(\overline{\text{k}_2}+\bar{K}\right)+m_e\right).\left(\bar{\gamma }\cdot \bar{\varepsilon }\left(\text{k}_2\right)\right).\left(\bar{\gamma }\cdot \bar{K}+m_e\right).\left(\bar{\gamma }\cdot \bar{\varepsilon }\left(\text{k}_1\right)\right)\right)\right)}{\left(\bar{K}^2-m_e^2\right).\left(\left(\overline{\text{k}_2}+\bar{K}\right){}^2-m_e^2\right).\left(\left(\overline{\text{k}_2}+\bar{K}-\overline{\text{q}_1}\right){}^2-m_e^2\right).\left(\left(\overline{\text{k}_2}+\bar{K}-\overline{\text{q}_1}-\overline{\text{q}_2}\right){}^2-m_e^2\right)}
\end{align*}
\end{frame}
\end{document}