方程式拆分成两行时出错

方程式拆分成两行时出错

我曾尝试用一个方程来写这个

方程

因此我尝试了以下方法:

      \begin{equation}
      \begin{split}
      \phi^{(1)}(x,y,t)=\int_{-\infty}^{\infty}-\frac{\gamma +\coth(\xi h_2)}{Q(\xi)} e^{\xi(y+h_1)}\left[\frac{\omega_1^2 \cos(\omega_1(t-\\tau))-\omega_2^2 \cos(\omega_2(t-\\tau))}{\omega_1^2 - \omega_2^2} \widetilde{P_0}(\xi,t)\right]e^{-\xi x} \ d\xi \\
      &+ \int_{-\infty}^{\infty}-\frac{g \epsilon \xi}{Q(\xi)} e^{\xi(y+h_1)}\left[\frac{ \cos(\omega_2(t-\\tau))-\cos(\omega_1(t-\\tau))}{\omega_1^2 - \omega_2^2}  \widetilde{P_0}(\xi,t)\right]e^{-\xi x} \ d\xi
      \end{split}
      \end{equation}

但最终还是出现了错误

.! Missing } inserted.<inserted text>} \end{split}

答案1

\\tau效果不太好。下面这个可以:

 \documentclass{article}

 \usepackage{amsmath}
 \usepackage[margin=1in]{geometry}


 \begin{document}
 \begin{equation}
      \begin{split}
      \phi^{(1)}(x,y,t)=\int_{-\infty}^{\infty}-\frac{\gamma +\coth(\xi h_2)}{Q(\xi)} e^{\xi(y+h_1)}\biggl[\frac{\omega_1^2 \cos(\omega_1(t-\tau))-         \omega_2^2 \cos(\omega_2(t-\tau))}{\omega_1^2 - \omega_2^2} \widetilde{P_0}(\xi,t)\biggr]e^{-\xi x} \ d\xi 
        \\
  + 
 \int_{-\infty}^{\infty}-\frac{g \epsilon \xi}{Q(\xi)} e^{\xi(y+h_1)}\left[\frac{ \cos(\omega_2(t-\tau))-\cos(\omega_1(t-\tau))}{\omega_1^2 - \omega_2^2}  \widetilde{P_0}(\xi,t)\right]e^{-\xi x} \ d\xi
      \end{split}
      \end{equation}

\end{document}

相关内容