我曾尝试用一个方程来写这个
因此我尝试了以下方法:
\begin{equation}
\begin{split}
\phi^{(1)}(x,y,t)=\int_{-\infty}^{\infty}-\frac{\gamma +\coth(\xi h_2)}{Q(\xi)} e^{\xi(y+h_1)}\left[\frac{\omega_1^2 \cos(\omega_1(t-\\tau))-\omega_2^2 \cos(\omega_2(t-\\tau))}{\omega_1^2 - \omega_2^2} \widetilde{P_0}(\xi,t)\right]e^{-\xi x} \ d\xi \\
&+ \int_{-\infty}^{\infty}-\frac{g \epsilon \xi}{Q(\xi)} e^{\xi(y+h_1)}\left[\frac{ \cos(\omega_2(t-\\tau))-\cos(\omega_1(t-\\tau))}{\omega_1^2 - \omega_2^2} \widetilde{P_0}(\xi,t)\right]e^{-\xi x} \ d\xi
\end{split}
\end{equation}
但最终还是出现了错误
.! Missing } inserted.<inserted text>} \end{split}
答案1
\\tau
效果不太好。下面这个可以:
\documentclass{article}
\usepackage{amsmath}
\usepackage[margin=1in]{geometry}
\begin{document}
\begin{equation}
\begin{split}
\phi^{(1)}(x,y,t)=\int_{-\infty}^{\infty}-\frac{\gamma +\coth(\xi h_2)}{Q(\xi)} e^{\xi(y+h_1)}\biggl[\frac{\omega_1^2 \cos(\omega_1(t-\tau))- \omega_2^2 \cos(\omega_2(t-\tau))}{\omega_1^2 - \omega_2^2} \widetilde{P_0}(\xi,t)\biggr]e^{-\xi x} \ d\xi
\\
+
\int_{-\infty}^{\infty}-\frac{g \epsilon \xi}{Q(\xi)} e^{\xi(y+h_1)}\left[\frac{ \cos(\omega_2(t-\tau))-\cos(\omega_1(t-\tau))}{\omega_1^2 - \omega_2^2} \widetilde{P_0}(\xi,t)\right]e^{-\xi x} \ d\xi
\end{split}
\end{equation}
\end{document}