下面是我的代码
\begin{center}
\centering
\resizebox{!}{5cm} {
\begin{tabular}{| l | r | }
\hline
\(\frac{\mathrm{d}}{\mathrm{d}x}(x^n)=nx^{n-1}\) & \(\int {x^n}\,\mathrm{d}x=\frac{1}{n+1}x^{n+1}+c, n\neq-1\) \\ \hline
\(\frac{\mathrm{d}}{\mathrm{d}x}(\mathrm{e}^{ax})=a\mathrm{e}^{ax}\) & \(\int {\mathrm{e}^{ax}}\,\mathrm{d}x=\frac{1}{a}\mathrm{e}^{ax}+c\) \\ \hline
\(\frac{\mathrm{d}}{\mathrm{d}x}(\log_{\mathrm{e}} {(x)})=\frac{1}{x}\) & \(\int {\frac{1}{x}}\,\mathrm{d}x=\log_{\mathrm{e}} {|x|}+c\) \\ \hline
\(\frac{\mathrm{d}}{\mathrm{d}x}(\sin{(ax)})=a\cos{(ax)}\) & \(\int {\sin{(ax)}}\,\mathrm{d}x=-\frac{1}{a}\cos{(ax)}+c\) \\ \hline
\(\frac{\mathrm{d}}{\mathrm{d}x}(\cos{(ax)})=-a\sin{(ax)}\) & \(\int {\cos{(ax)}}\,\mathrm{d}x=\frac{1}{a}\sin{(ax)}+c\) \\ \hline
\(\frac{\mathrm{d}}{\mathrm{d}x}(\tan{(ax)})=a\sec^2{(ax)}\) & \(\int {\sec^2{(ax)}}\,\mathrm{d}x=\frac{1}{a}\tan{(ax)}+c\) \\ \hline
\(\frac{\mathrm{d}}{\mathrm{d}x}(\arcsin{(x)})=\frac{1}{\sqrt{1-x^2}}\) & \(\int {\frac{1}{\sqrt{a^2-x^2}}\,\mathrm{d}x=\arcsin{(\frac{x}{a})}}+c, a>0\) \\ \hline
\(\frac{\mathrm{d}}{\mathrm{d}x}(\arccos{(x)})=\frac{-1}{\sqrt{1-x^2}}\) & \(\int {\frac{-1}{\sqrt{a^2-x^2}}\,\mathrm{d}x=\arccos{(\frac{x}{a})}}+c, a>0\) \\ \hline
\(\frac{\mathrm{d}}{\mathrm{d}x}(\arctan{(x)})=\frac{1}{1+x^2}\) & \(\int {\frac{a}{\sqrt{a^2+x^2}}\,\mathrm{d}x=\arctan{(\frac{x}{a})}}+c\) \\ \hline
\(\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{a(n+1)}{(ax+b)}^{n+1})={(ax+b)}^n\) & \(\int {{(ax+b)}^n}\,\mathrm{d}x=\frac{1}{a(n+1)}{(ax+b)}^{n+1}+c, n\neq-1\) \\ \hline
\(\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{a}log_{\mathrm{e}} |ax+b|)={(ax+b)}^{-1}\) & \(\int {{(ax+b)}^{-1}}\,\mathrm{d}x=\frac{1}{a}log_{\mathrm{e}} |ax+b|+c\) \\
\hline
product rule & \(\frac{\mathrm{d}}{\mathrm{d}x}(uv)=u\frac{\mathrm{d}v}{\mathrm{d}x}+v\frac{\mathrm{d}u}{\mathrm{d}x}\) \\ \hline
quotient rule & \(\frac{\mathrm{d}}{\mathrm{d}x}(\frac{u}{v})=\frac{v\frac{\mathrm{d}u}{\mathrm{d}x}-u\frac{\mathrm{d}v}{\mathrm{d}x}}{v^2}\) \\ \hline
chain rule & \(\frac{\mathrm{d}y}{\mathrm{d}x}=\frac{\mathrm{d}y}{\mathrm{d}u}\frac{\mathrm{d}u}{\mathrm{d}x}\) \\ \hline
arc length & \(\int_{x_1}^{x_2} {\sqrt{1+{(f'(x))}^2}}\,\mathrm{d}x\) or \(\int_{t_1}^{t_2} {\sqrt{{(x'(t))}^{2}+{(y'(t))}^{2}}\,\mathrm{d}t}\) \\ \hline
\end{tabular}
}
\end{center}
答案1
如果您不关心边距,请将表格的宽度减小到零,它就会居中。
\begin{center}
\makebox[0cm]{... Table ...}
\end{center}
一些说明:
\begin{center}\centering ...\end{center}
太多了,要么使用 要么\begin{center} ... \end{center}
使用{\centering ...}
。而不是
\begin{tabular} ... each cell in \(...\) \end{tabular}
更好地利用\(\begin{array} ... everything is automatically in math mode ... \end{array}\)
如果您注重排版,请避免使用垂直线,并将水平线数量减少到定位所需的最低限度。
对于数学模式中的文本,请使用或
\text{...}
包。amsmath
mathtools
\documentclass{article}
\usepackage{amsmath}
\usepackage{blindtext}
\usepackage{booktabs}
\newcommand\dd{\mathrm{d}}
\newcommand\ddx{\frac\dd{\dd x}}
\begin{document}
\blindtext
\begin{center}
\makebox[0cm]%
{\renewcommand\arraystretch{1.5}%
\(\begin{array}{ll}
\toprule
\ddx(x^n)=nx^{n-1}
& \int {x^n}\,\dd x=\frac{1}{n+1}x^{n+1}+c, n\neq-1
\\
\ddx(\mathrm{e}^{ax})=a\mathrm{e}^{ax}
& \int {\mathrm{e}^{ax}}\,\dd x=\frac{1}{a}\mathrm{e}^{ax}+c
\\
\ddx(\log_{\mathrm{e}} {(x)})=\frac{1}{x}
& \int {\frac{1}{x}}\,\dd x=\log_{\mathrm{e}} {|x|}+c
\\\midrule
\ddx(\sin{(ax)})=a\cos{(ax)}
& \int {\sin{(ax)}}\,\dd x=-\frac{1}{a}\cos{(ax)}+c
\\
\ddx(\cos{(ax)})=-a\sin{(ax)}
& \int {\cos{(ax)}}\,\dd x=\frac{1}{a}\sin{(ax)}+c
\\
\ddx(\tan{(ax)})=a\sec^2{(ax)}
& \int {\sec^2{(ax)}}\,\dd x=\frac{1}{a}\tan{(ax)}+c
\\\midrule
\ddx(\arcsin{(x)})=\frac{1}{\sqrt{1-x^2}}
& \int {\frac{1}{\sqrt{a^2-x^2}}\,\dd x=\arcsin{(\frac{x}{a})}}+c, a>0
\\
\ddx(\arccos{(x)})=\frac{-1}{\sqrt{1-x^2}}
& \int {\frac{-1}{\sqrt{a^2-x^2}}\,\dd x=\arccos{(\frac{x}{a})}}+c, a>0
\\
\ddx(\arctan{(x)})=\frac{1}{1+x^2}
& \int {\frac{a}{\sqrt{a^2+x^2}}\,\dd x=\arctan{(\frac{x}{a})}}+c
\\\midrule
\ddx(\frac{1}{a(n+1)}{(ax+b)}^{n+1})={(ax+b)}^n
& \int {{(ax+b)}^n}\,\dd x=\frac{1}{a(n+1)}{(ax+b)}^{n+1}+c, n\neq-1
\\
\ddx(\frac{1}{a}\log_{\mathrm{e}} |ax+b|)={(ax+b)}^{-1}
& \int {{(ax+b)}^{-1}}\,\dd x=\frac{1}{a}\log_{\mathrm{e}} |ax+b|+c
\\
\text{product rule}
& \ddx(uv)=u\frac{\dd v}{\dd x}+v\frac{\dd u}{\dd x}
\\\midrule
\text{quotient rule}
& \ddx(\frac{u}{v})=\frac{v\frac{\dd u}{\dd x}-u\frac{\dd v}{\dd x}}{v^2}
\\
\text{chain rule}
& \frac{\dd y}{\dd x}=\frac{\dd y}{\dd u}\frac{\dd u}{\dd x}
\\
\text{arc length}
& \int_{x_1}^{x_2} {\sqrt{1+{(f'(x))}^2}}\,\dd x\text{ or }\int_{t_1}^{t_2} {\sqrt{{(x'(t))}^{2}+{(y'(t))}^{2}}\,\dd t}
\\\bottomrule
\end{array}
\)%
}
\end{center}
\blindtext
\end{document}
答案2
由于几乎整个材料都由方程组成,因此请使用array
环境而不是tabular
环境。摆脱所有无意义和不必要的花括号。摆脱所有垂直线和大多数水平线。增加值\arraystretch
。(我建议在我的答案中使用值1.5
;随意尝试使用此参数的较小和较大值。)
\documentclass{article}
\usepackage{amsmath,booktabs}
\newcommand\ddx{\frac{\mathrm{d}}{\mathrm{d}x}}
\newcommand{\dee}{\mathop{\mathrm{d}\!}}
\usepackage[letterpaper,margin=1in]{geometry} % set page parameters appropriately
\begin{document}
\begin{center}
\renewcommand\arraystretch{1.5}
$\begin{array}{@{} ll @{} }
\toprule
\ddx(x^n)=nx^{n-1}
& \int x^n\dee x
=\frac{1}{n+1}x^{n+1}+c,\ n\neq-1 \\
\ddx(\mathrm{e}^{ax})=a\mathrm{e}^{ax}
& \int {\mathrm{e}^{ax}}\dee x
=\frac{1}{a} \mathrm{e}^{ax}+c \\
\ddx(\log_{\mathrm{e}} (x))
=\frac{1}{x}
& \int\!\frac{1}{x}\dee x=\log_{\mathrm{e}} |x|+c \\
\ddx(\sin(ax))=a\cos(ax)
& \int \sin(ax)\dee x
=-\frac{1}{a}\cos(ax)+c \\
\ddx(\cos(ax))=-a\sin(ax)
& \int\cos(ax)\dee x
=\frac{1}{a}\sin(ax)+c \\
\ddx(\tan(ax))=a\sec^2(ax)
& \int \sec^2(ax)\dee x
=\frac{1}{a}\tan(ax)+c \\
\ddx(\arcsin(x))=\frac{1}{\sqrt{1-x^{2\mathstrut}}}
& \int\!\frac{1}{\sqrt{a^2-x^{2\mathstrut}}}\dee x
=\arcsin\bigl(\frac{x}{a}\bigr)+c,\ a>0 \\
\ddx(\arccos(x))=\frac{-1}{\sqrt{1-x^{2\mathstrut}}}
& \int\!\frac{-1}{\sqrt{a^2-x^{2\mathstrut}}}\dee x
=\arccos\bigl(\frac{x}{a}\bigr)+c,\ a>0 \\
\ddx(\arctan(x))=\frac{1}{1+x^{2\mathstrut}}
& \int\!\frac{a}{\sqrt{a^2+x^{2\mathstrut}}}\dee x
=\arctan\bigl(\frac{x}{a}\bigr)+c \\
\ddx\bigl(\frac{1}{a(n+1)}{(ax+b)}^{n+1}\bigr)
=(ax+b)^n
& \int (ax+b)^n\dee x=\frac{1}{a(n+1)}(ax+b)^{n+1}+c,\ n\neq-1 \\
\ddx\bigl(\frac{1}{a}\log_{\mathrm{e}} |ax+b|\bigr)
=(ax+b)^{-1}
& \int (ax+b)^{-1}\dee x
=\frac{1}{a}\log_{\mathrm{e}} |ax+b|+c \\
\text{Product rule}
& \ddx(uv)=u\frac{\mathrm{d}v}{\mathrm{d}x}
+v\frac{\mathrm{d}u}{\mathrm{d}x} \\
\text{Quotient rule} & \ddx\bigl(\frac{u}{v}\bigr)
=\frac{v\frac{\mathrm{d}u}{\mathrm{d}x}
-u \frac{\mathrm{d}v}{\mathrm{d}x}}{v^{2\mathstrut}} \\
\text{Chain rule}
& \frac{\mathrm{d}y}{\mathrm{d}x}
=\frac{\mathrm{d}y}{\mathrm{d}u}
\frac{\mathrm{d}u}{\mathrm{d}x} \\
\text{Arc length}
& \int_{x_1}^{x_2} \sqrt{1+(f'(x))^{2\mathstrut}}\dee x \text{ or }
\int_{t_1}^{t_2} \sqrt{(x'(t))^{2}+(y'(t))^{2\mathstrut}}\dee t \\
\bottomrule
\end{array}$
\end{center}
\end{document}
答案3
按照您在 MWE 中的形式(带有水平和垂直规则),我得到了下表:
\documentclass{article}
\usepackage[margin=30mm]{geometry}
\usepackage{array,makecell, tabularx}
\usepackage{showframe}% for show page layout
\renewcommand*\ShowFrameColor{\color{red}}% with red lines ... in real document remove this two lines
\usepackage{amsmath}
\newcommand\ud{\,\mathrm{d}} % shortcuts for d, du, dv, dx, dy
\newcommand\udu{\ud\,u}
\newcommand\udv{\ud\,v}
\newcommand\udx{\ud\,x}
\newcommand\udy{\ud\,y}
\setcellgapes{5pt}
\begin{document}
\centering
\makegapedcells
\begin{tabularx}{\linewidth}{|>{$\displaystyle}l<{$} | >{$\displaystyle}X<{$} | }
\hline
\frac{\ud}{\udx}(x^n)=nx^{n-1}
& \int x^n \udx = \frac{1}{n+1}x^{n+1}+c,\; n\neq -1 \\
\hline
\frac{\ud}{\udx}(\mathrm{e}^{ax})=a\mathrm{e}^{ax}
& \int \mathrm{e}^{ax} \udx = \frac{1}{a}\mathrm{e}^{ax}+c \\
\hline
\frac{\ud}{\udx}\left(\log_{\mathrm{e}} (x)\right) = \frac{1}{x}
& \int \frac{1}{x} \udx = \log_{\mathrm{e}} |x|+c \\
\hline
\frac{\ud}{\udx}(\sin(ax))=a\cos(ax)
& \int \sin(ax) \udx = -\frac{1}{a}\cos(ax)+c \\
\hline
\frac{\ud}{\udx}(\cos(ax)) = -a\sin(ax)
& \int \cos(ax)\udx = \frac{1}{a}\sin(ax)+c \\
\hline
\frac{\ud}{\udx}(\tan(ax)) = a\sec^2 (ax)
& \int \sec^2(ax) \udx = \frac{1}{a}\tan{(ax)}+c \\
\hline
\frac{\ud}{\udx}(\arcsin(x)) = \frac{1}{\sqrt{1-x^2}}
& \int \frac{1}{\sqrt{a^2-x^2} \udx = \arcsin(\frac{x}{a})}+c,\; a>0 \\
\hline
\frac{\ud}{\udx}(\arccos(x)) = \frac{-1}{\sqrt{1-x^2}}
& \int \frac{-1}{\sqrt{a^2-x^2}} \udx=\arccos(\frac{x}{a})+c,\; a>0 \\
\hline
\frac{\ud}{\udx}(\arctan(x)) = \frac{1}{1+x^2}
& \int \frac{a}{\sqrt{a^2+x^2}} \udx = \arctan(\frac{x}{a})+c \\
\hline
\frac{\ud}{\udx}\left(\frac{1}{a(n+1)}(ax+b)^{n+1}\right) = (ax+b)^n
& \int (ax+b)^n \udx = \frac{1}{a(n+1)} (ax+b)^{n+1}+c,\; n\neq-1 \\
\hline
\frac{\ud}{\udx}\left(\frac{1}{a}\log_{\mathrm{e}} |ax+b|\right) = (ax+b)^{-1}
& \int (ax+b)^{-1} \udx = \frac{1}{a}\log_{\mathrm{e}} |ax+b|+c \\
\hline
\text{product rule}
& \frac{\ud}{\udx}(uv) = u\frac{\udv}{\udx}+v\frac{\udu}{\udx} \\
\hline
\text{quotient rule}
& \frac{\ud}{\udx}(\frac{u}{v}) = \frac{v\frac{\udu}{\udx}-u\frac{\udv}{\udx}}{v^2} \\ \hline
\text{chain rule}
& \frac{\udy}{\udx}=\frac{\udy}{\udu}\frac{\udu}{\udx} \\
\hline
\text{arc length}
& \int_{x_1}^{x_2} \sqrt{1+(f'(x))^2} \udx \text{ or }
\int_{t_1}^{t_2} \sqrt{(x'(t))^2 + (y'(t))^2 \ud\,t} \\
\hline
\end{tabularx}
\end{document}
为了在单元格中留出更多空间,可以使用\maqkegapedcells
包中的makecell
。还定义了四个新命令,例如\,\matrm{d}
等,以便更简短地书写方程式。红色框显示页面布局,在实际使用中必须将其删除。