下面是一个线性方程组的图片,图中显示了其解。(参见第一个系统。)请注意,在左侧,第一行中的 $x$ 和第二行中的 $y$ 太接近了。将它们与第二个系统中的 $x$ 和 $y$ 进行比较。
问题:是否有可能在第一个系统中将 $x$ 和 $y$ 分开,以便它们的位置与第二个系统中的位置相匹配?
我尝试使用\phantom
,但没有帮助;与第二个系统相比,它创造了太多空间。
\documentclass[10pt]{amsart}
\usepackage{amsmath, amssymb, amsfonts, amsthm}
\usepackage{systeme}
\begin{document}
\title{Title}
\author{Author}
\date{\today}
\maketitle
\noindent Here is a system of linear equations whose solution is shown:
\[
\systeme[xyz]{x - z = 1, y + 2z = 3, z = 0}
\quad \longrightarrow \quad
\systeme*[xyz]{x = 1, y = 3, z = 0}
\quad \longrightarrow \quad
\text{point $(1,1,0)$.}
\]
The $x$ and $y$ on the left side are too close. Compare it to this system:
\[
\systeme[xyz]{x + y - z = 1, y + 2z = 3, z = 0}
\quad \longrightarrow \quad
\systeme*[xyz]{x = -2, y = 3, z = 0}
\quad \longrightarrow \quad
\text{point $(-2,1,0)$.}
\]
\end{document}
答案1
A\phantom
有助于使其工作。请注意,我调整了第二个示例的符号以匹配第一个示例的符号,以便可以看到对齐匹配。
\documentclass[10pt]{amsart}
\usepackage{amsmath, amssymb, amsfonts, amsthm}
\usepackage{systeme}
\begin{document}
\title{Title}
\author{Author}
\date{\today}
\maketitle
\noindent Here is a system of linear equations whose solution is shown:
\[
\systeme[xyz]{x \phantom{{}+{}} - z = 1, y + 2z = 3, z = 0}
\quad \longrightarrow \quad
\systeme*[xyz]{x = 1, y = 3, z = 0}
\quad \longrightarrow \quad
\text{point $(1,1,0)$.}
\]
The $x$ and $y$ on the left side are too close. Compare it to this system:
\[
\systeme[xyz]{x + y - z = 1, y + 2z = 3, z = 0}
\quad \longrightarrow \quad
% \systeme*[xyz]{x = -2, y = 3, z = 0}
\systeme*[xyz]{x = 1, y = 3, z = 0}
\quad \longrightarrow \quad
\text{point $(1,1,0)$.}
% \text{point $(-2,1,0)$.}
\]
\end{document}