我正在撰写论文,有相当长的回归表,这意味着我只能在一页上放进有限的文本空间。有没有办法将表格移到页面上方并缩小它,以便放进更多的解释性文字?
\documentclass[11pt]{article}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{amsmath,amsfonts,amssymb}
\usepackage{booktabs}
\usepackage{dcolumn}
\usepackage{mathtools}
\usepackage{graphicx}
\usepackage[utf8]{inputenc}
\usepackage{rotating}
\usepackage{adjustbox}
\usepackage{tabularx}
\usepackage[margin=35mm]{geometry}
\usepackage{titlesec}
\usepackage{siunitx} % added
\usepackage{threeparttable}
\newcommand\mc[1]{\multicolumn{1}{c}{#1}}
\titleformat*{\subsection}{\normalfont\large\itshape}
\makeatletter
\renewcommand\footnoterule{
\kern-3\p@
\hrule\@width \textwidth
\kern2.6\p@}
\makeatother
\usepackage{rotating}
\begin{document}
\section{Results}\label{Results}
\subsection{Objective 1}
\begin{table}[htbp]\centering
\def\sym#1{\ifmmode^{#1}\else\(^{#1}\)\fi}
\caption{Investment on Bribes: Pooled Sample table\label{tab1}}
\begin{tabular*}{0.7\columnwidth}{@{\hskip\tabcolsep\extracolsep\fill}l*{1}
{D{.}{.}{-1}}}
\toprule
&\multicolumn{1}{c}{(1)}\\
&\multicolumn{1}{c}{ln\_invest}\\
\midrule
Bribes& 0.008 \\
& (0.0136) \\
\addlinespace
Medium(20-99) & 0.529 \\
& (0.267) \\
\addlinespace
Large(100 and over) & 2.171\sym{***}\\
& (0.460) \\
\addlinespace
Government & 0.427 \\
& (0.435) \\
\addlinespace
Foreign & -0.337 \\
& (0.257) \\
\addlinespace
Fincons & 0.107 \\
& (0.154) \\
\addlinespace
Court & -0.168 \\
& (0.148) \\
\addlinespace
lnAge & 0.069 \\
& (0.242) \\
\addlinespace
Constant & 9.976\sym{***}\\
& (0.574) \\
\addlinespace
Year Dummies & \multicolumn{1}{c}{YES}\\
\addlinespace
Industry Dummies & \multicolumn{1}{c}{YES}\\
\addlinespace
Missing Year Dummy & \multicolumn{1}{c}{YES}\\
\addlinespace
\midrule
Observations & \multicolumn{1}{c}{6417} \\
\bottomrule
\multicolumn{2}{l}{\footnotesize \sym{*} \(p<0.05\), \sym{**} \(p<0.01\),
\sym{***} \(p<0.001\)}\\
\multicolumn{2}{l}{\footnotesize Note: Robust standard errors in
parentheses, clustered by Country}\\
\end{tabular*}
\end{table}
The first model estimated, as shown in T, is the most basic form of the mechanism investigated. When controlling for industry and year effects, I find a positive relationship between corruption and bribery, although this result is statistically not significant. Results suggest that for a $1\%$ increase in bribe, this increases ln\_invest by 0.8 percentage points. This positive relationship contradicts our initial hypothesis of bribery
\end{document}
答案1
\documentclass[11pt]{article}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{amsmath,amsfonts,amssymb}
\usepackage{booktabs}
\usepackage{dcolumn}
\usepackage{mathtools}
\usepackage{graphicx}
\usepackage[utf8]{inputenc}
\usepackage{rotating}
\usepackage{adjustbox}
\usepackage{tabularx}
\usepackage[margin=35mm]{geometry}
\usepackage{titlesec}
\usepackage{siunitx} % added
\usepackage{threeparttable}
\newcommand\mc[1]{\multicolumn{1}{c}{#1}}
\titleformat*{\subsection}{\normalfont\large\itshape}
\makeatletter
\renewcommand\footnoterule{
\kern-3\p@
\hrule\@width \textwidth
\kern2.6\p@}
\makeatother
\usepackage{rotating}
\begin{document}
\section{Results}\label{Results}
\subsection{Objective 1}
\begin{table}[htbp]\centering
\def\sym#1{\ifmmode^{#1}\else\(^{#1}\)\fi}
\caption{Investment on Bribes: Pooled Sample table\label{tab1}}
\begin{tabular*}{0.7\columnwidth}{@{\hskip\tabcolsep\extracolsep\fill}l*{2}
{D{.}{.}{-1}}}
\toprule
\multicolumn{3}{c}{(1)}\\
&\multicolumn{2}{c}{ln\_invest}\\
\midrule
Bribes& 0.008 & (0.0136) \\
Medium(20-99) & 0.529 & (0.267) \\
Large(100 and over) & 2.171\sym{***} & (0.460) \\
Government & 0.427 & (0.435) \\
Foreign & -0.337 & (0.257) \\
Fincons & 0.107 & (0.154) \\
Court & -0.168 & (0.148) \\
lnAge & 0.069 & (0.242) \\
Constant & 9.976\sym{***} & (0.574) \\
\addlinespace
Year Dummies & \multicolumn{2}{c}{YES}\\
Industry Dummies & \multicolumn{2}{c}{YES}\\
Missing Year Dummy & \multicolumn{2}{c}{YES}\\
\midrule
Observations & \multicolumn{1}{c}{6417} \\
\bottomrule
\multicolumn{3}{l}{\footnotesize \sym{*} \(p<0.05\), \sym{**} \(p<0.01\),
\sym{***} \(p<0.001\)}\\
\multicolumn{3}{l}{\footnotesize Note: Robust standard errors in
parentheses, clustered by Country}\\
\end{tabular*}
\end{table}
The first model estimated, as shown in T, is the most basic form of the mechanism investigated. When controlling for industry and year effects, I find a positive relationship between corruption and bribery, although this result is statistically not significant. Results suggest that for a $1\%$ increase in bribe, this increases ln\_invest by 0.8 percentage points. This positive relationship contradicts our initial hypothesis of bribery
\end{document}
答案2
差额大卫·卡莱尔答案是,我利用包threeparttable
和siunitx
,不使用任何 OP 定义(我不清楚它们的用途),稍微更改\mc
表中使用的定义,并从序言中仅保留表中使用的包:
\documentclass[11pt]{article}
\usepackage[margin=35mm]{geometry}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
%\usepackage{mathtools,amsfonts,amssymb}
\usepackage{booktabs, threeparttable}
\newcommand\mc[1]{\multicolumn{2}{c}{#1}}% <-- changed
\usepackage{siunitx}
\begin{document}
\begin{center}
\begin{threeparttable}[htb]
\caption{Investment on Bribes: Pooled Sample table}
\label{tab1}
\sisetup{ table-space-text-pre ={(},
table-space-text-post={\textsuperscript{***}},
table-align-text-pre=false,
table-align-text-post=false,
explicit-sign,
input-open-uncertainty={[},
input-close-uncertainty={]}
}
\begin{tabular*}{0.6\linewidth}{l S[table-format=-1.4] S[table-format=1.4]}
\toprule
& \mc{(1)} \\
& \mc{ln\_invest} \\
\midrule
Bribes & 0.008
& (0.0136) \\
Medium(20-99) & 0.529
& (0.267) \\
Large(100 and over) & 2.171\tnote{***}
& (0.460) \\
Government & 0.427
& (0.435) \\
Foreign & -0.337
& (0.257) \\
Fincons & 0.107 \\
& (0.154) \\
Court & -0.168
& (0.148) \\
lnAge & 0.069
& (0.242) \\
Constant & 9.976\tnote{***}
& (0.574) \\
Year Dummies & \mc{YES} \\
Industry Dummies & \mc{YES} \\
Missing Year Dummy & \mc{YES} \\
\midrule
Observations & \mc{6417} \\
\bottomrule
\end{tabular*}\scriptsize\raggedright\smallskip
\begin{tablenotes}[para, flushleft]
\item[*] \(p<0.1\)
\item[**] \(p<0.01\)
\item[***] \(p<0.001\)
\end{tablenotes}
Note: Robust standard errors in parentheses, clustered by Country
\end{threeparttable}
\end{center}
The first model estimated, as shown in T, is the most basic form of the mechanism investigated. When controlling for industry and year effects, I find a positive relationship between corruption and bribery, although this result is statistically not significant. Results suggest that for a $1\%$ increase in bribe, this increases ln\_invest by 0.8 percentage points. This positive relationship contradicts our initial hypothesis of bribery
\end{document}