![如何使用“[]”创建分数等式,而分子和分母可能有两行以上](https://linux22.com/image/355267/%E5%A6%82%E4%BD%95%E4%BD%BF%E7%94%A8%E2%80%9C%5B%5D%E2%80%9D%E5%88%9B%E5%BB%BA%E5%88%86%E6%95%B0%E7%AD%89%E5%BC%8F%EF%BC%8C%E8%80%8C%E5%88%86%E5%AD%90%E5%92%8C%E5%88%86%E6%AF%8D%E5%8F%AF%E8%83%BD%E6%9C%89%E4%B8%A4%E8%A1%8C%E4%BB%A5%E4%B8%8A.png)
如何创建带有“[]”的分数等式,其中分子和分母可能有两行以上:新等式为:
\begin{equation}
q_{2n}^*=\Bigg[
-\frac{(\alpha -1) \alpha A_0^2 \beta k^2 \left(\lambda _h-\lambda
_l\right) \left(-c_l \left(\lambda _h-1\right)+c_h \left(\lambda _l-
1\right)+\left(c_n+c_{\text{nature}}-1\right) \left(\lambda _h-\lambda
_l\right)\right)+2 A_0 k \left(\alpha (\beta -1)+\alpha \beta c_h
\left(\lambda _h+1\right)+\alpha \beta \lambda _h \left(-2 c_n-2
c_{\text{nature}}-\lambda _h \delta _m+\delta _m+1\right)-(\alpha -1) c_l
\left(\lambda _l+1\right)+\lambda _l \left(-\alpha +2 (\alpha -1) c_n+2
(\alpha -1) c_{\text{nature}}+\alpha \left(-\delta _m\right)+\delta
_m\right)+\lambda _l+(\alpha -1) \lambda _l^2 \delta _m+1\right)+4
\left(c_n+c_{\text{nature}}-\delta _m\right)}{2 k \left(A_0 k \left(\alpha
(\beta -1)+\alpha \beta \lambda _h^2-2 \alpha \beta \lambda _h-(\alpha
-1) \left(\lambda _l-2\right) \lambda _l+1\right)+4\right)}
\Bigg]
\end{equation}
答案1
像这样吗?
观察使用方括号和花括号代替一些圆括号。
\documentclass{article}
\usepackage{array,amsmath,geometry}
\begin{document}
\begin{equation}
\renewcommand\arraystretch{1.25}
q_{2n}^*=-\frac{ \left[ \begin{array}{@{} >{{}}l @{}}
(\alpha-1)\alpha A_0^2 \beta k^2 (\lambda_h-\lambda_l)
\bigl[-c_l (\lambda_h-1)+c_h (\lambda_l-1) \\
+(c_n+c_{\text{nature}}-1) (\lambda_h-\lambda_l)\bigr]
+2 A_0 k \bigl\{\alpha (\beta -1)+\alpha \beta c_h (\lambda_h+1)\\
+\alpha \beta \lambda_h (-2 c_n-2 c_{\text{nature}}
-\lambda_h \delta_m+\delta_m+1)-(\alpha -1) c_l (\lambda_l+1)\\
+\lambda_l \bigl[-\alpha +2 (\alpha -1) c_n+2 (\alpha -1)
c_{\text{nature}}+\alpha (-\delta_m)+\delta_m\bigr]\\
+\lambda_l+(\alpha -1) \lambda_l^2 \delta_m+1\bigr\}
+4 (c_n+c_{\text{nature}}-\delta_m)
\end{array} \right]
}{2 k \bigl[A_0 k \bigl(\alpha (\beta -1)+\alpha \beta \lambda_h^{2^{\mathstrut}}
-2 \alpha \beta \lambda_h-(\alpha-1) (\lambda_l-2) \lambda_l + 1 \bigr)+4\bigr]}
\end{equation}
\end{document}