我正在尝试将小数对齐方式放入下表中。您能给我一些建议吗?提前谢谢!
目前我的表格是这样的:
\documentclass{article}
\usepackage{booktabs}
\usepackage{multirow}
\usepackage{array}
\usepackage{siunitx}
\begin{document}
\begin{table*}[h!]
\caption{Results with different numerical schemes for the simple Cartesian trajectory}
\label{Table:02}
\centering
\begin{adjustbox}{max width=\textwidth}
\begin{tabular}{ccccccccc} \hline
Radius of platforms Vs Limb lengths & Numerical Scheme & & & & Errors & & & \\ \cline{4-9}
& & & $\pmb{g}_x[\rm{mm}]$ & $\pmb{g}_y[\rm{mm}]$ & $\pmb{g}_z[\rm{mm}]$ & $\pmb{g}_{\psi}[^{\circ}]$ & $\pmb{g}_{\theta}[^{\circ}]$ & $\pmb{g}_{\phi}[^{\circ}]$ \\ \hline
\\
$\mathbf {1:1}$ & Constant Jacobian & max & 0.39 & 1.27 & $\mathbf{2.41}$ & 0.54 & 0.73 & 0.74 \\
& & min & $\mathbf{-4.52}$ & -1.38 & -1.88 & -0.56 & -0.72 & -0.72 \\
$\sigma_{max}$ (1.08) & Updated Jacobian & max & 0.51 & $\mathbf{0.92}$ & 0.85 & 0.58 & 0.68 & 0.68 \\
& & min & -0.56 & -0.84 &$\mathbf{ -0.93}$ & -0.58 & -0.83 & -0.81 \\
$\sigma_{min}$ (0.54) & Newton-Raphson Method & max & 0.50 &$\mathbf{ 0.87} $ & 0.84 & 0.63 & 0.68 & 0.72 \\
& with $\mathtt{fsolve}$ & min & -0.48 &$\mathbf{ -1.08}$ & -0.83 &-0.58 & -0.74 &-0.73 \\ \hline
\\
$\mathbf {1:2}$ & Constant Jacobian & max &0.41 & 1.47 & $\mathbf{1.74}$ & 1.02 & 0.58 & 0.53 \\
& & min &$\mathbf{ -2.72}$ & -1.49 & -1.56 & -1.11 & -0.55 & -0.52 \\
$\sigma_{max}$ (1.65) & Updated Jacobian & max & 0.43 & 1.37 & $\mathbf{1.49}$ & 1.06 & 0.55 & 0.57 \\
& & min & -0.50 & $\mathbf{-1.55}$ & -1.52 & -0.87 & -0.57 & -0.59\\
$\sigma_{min}$ (0.44) & Newton-Raphson Method &max & 0.38 & $\mathbf{1.44}$ & 1.37 & 0.98 & 0.51 & 0.58 \\
& with $\mathtt{fsolve}$ &min & -0.44 &$\mathbf{ -1.39}$ & -1.38 & -1.05 & -0.57 & -0.62 \\ \hline
\\
$\mathbf{1:3}$ & Constant Jacobian & max & 0.37 & 1.94 &$\mathbf{ 1.95}$ & 1.35 & 0.53 & 0.50 \\
& & min & -1.88 & -1.76 & $\mathbf{-2.06}$ & -1.24 & -0.63 & -0.55 \\
$\sigma_{max}$ (2.34) & Updated Jacobian & max & 0.39 & 1.93 & $\mathbf{2.10}$ & 1.37 & 0.54 & 0.51 \\
& & min & -0.42 & $\mathbf{-1.96}$ & -1.84 & -1.34 & -0.54 & -0.53 \\
$\sigma_{min}$ (0.43) & Newton-Raphson Method & max & 0.37 &$\mathbf{ 1.93}$ & 1.87 & 1.54 & 0.60 & 0.58 \\
& with $\mathtt{fsolve}$ &min & -0.39 &$\mathbf{ -2.13}$ & -1.85 & -1.33 & -0.53 & -0.51\\ \hline
\end{tabular}
\end{adjustbox}
\end{table*}
\end{document}
答案1
这里显示了第四列,其中包含包rccol
和列说明符R
\documentclass{article}
\usepackage{booktabs}
\usepackage{multirow}
\usepackage{array}
\usepackage{siunitx}
\usepackage{rccol}
\rcDecimalSign{.}
\usepackage{amsmath,bm,adjustbox}
\def\MC#1{\multicolumn{1}{c}{#1}}
\begin{document}
\begin{adjustbox}{max width=\textwidth}
\begin{tabular}{cccR{2}{2}ccccc} \hline
Radius of platforms Vs Limb lengths & Numerical Scheme & &
\MC{} & & Errors & & & \\ \cline{4-9}
& & & \MC{$\pmb{g}_x[\rm{mm}]$} & $\pmb{g}_y[\rm{mm}]$ &
$\pmb{g}_z[\rm{mm}]$ & $\pmb{g}_{\psi}[^{\circ}]$ &
$\pmb{g}_{\theta}[^{\circ}]$ & $\pmb{g}_{\phi}[^{\circ}]$ \\ \hline
\\
$\mathbf {1:1}$ & Constant Jacobian & max & 0.39 & 1.27 &
$\mathbf{2.41}$ & 0.54 & 0.73 & 0.74 \\
& & min & $\bf-4.52$ & -1.38 & -1.88 & -0.56 &
-0.72 & -0.72 \\
$\sigma_{max}$ (1.08) & Updated Jacobian & max & 0.51 &
$\mathbf{0.92}$ & 0.85 & 0.58 & 0.68 & 0.68 \\
& & min & -0.56 & -0.84 &$\bf-0.93$ & -0.58 & -0.83 & -0.81 \\
$\sigma_{min}$ (0.54) & Newton-Raphson Method & max & 0.50
&$\mathbf{ 0.87} $ & 0.84 & 0.63 & 0.68 & 0.72 \\
& with $\mathtt{fsolve}$ & min & -0.48
&$\mathbf{ -1.08}$ & -0.83 &-0.58 & -0.74 &-0.73 \\ \hline
\\
$\mathbf {1:2}$ & Constant Jacobian & max &0.41 & 1.47 &
$\mathbf{1.74}$ & 1.02 & 0.58 & 0.53 \\
& & min &$\bf-2.72$ & -1.49 & -1.56 & -1.11 & -0.55 & -0.52
\\
$\sigma_{max}$ (1.65) & Updated Jacobian & max & 0.43 & 1.37 &
$\mathbf{1.49}$ & 1.06 & 0.55 & 0.57 \\
& & min & -0.50 & $\mathbf{-1.55}$ & -1.52 & -0.87 &
-0.57 & -0.59\\
$\sigma_{min}$ (0.44) & Newton-Raphson Method &max & 0.38 &
$\mathbf{1.44}$ & 1.37 & 0.98 & 0.51 & 0.58 \\
& with $\mathtt{fsolve}$ &min & -0.44 &$\mathbf{
-1.39}$ & -1.38 & -1.05 & -0.57 & -0.62 \\ \hline
\\
$\mathbf{1:3}$ & Constant Jacobian & max & 0.37 & 1.94 &$\mathbf{
1.95}$ & 1.35 & 0.53 & 0.50 \\
& & min & -1.88 & -1.76 & $\mathbf{-2.06}$ & -1.24 & -0.63
& -0.55 \\
$\sigma_{max}$ (2.34) & Updated Jacobian & max & 0.39 & 1.93 &
$\mathbf{2.10}$ & 1.37 & 0.54 & 0.51 \\
& & min & -0.42 & $\mathbf{-1.96}$ & -1.84 & -1.34 &
-0.54 & -0.53 \\
$\sigma_{min}$ (0.43) & Newton-Raphson Method & max & 0.37
&$\mathbf{ 1.93}$ & 1.87 & 1.54 & 0.60 & 0.58 \\
& with $\mathtt{fsolve}$ &min & -0.39 &$\mathbf{
-2.13}$ & -1.85 & -1.33 & -0.53 & -0.51\\ \hline
\end{tabular}
\end{adjustbox}
\end{document}
答案2
使用geometry
包,您不必使用adjustbox
。这是我的建议,wih makecell
,它允许在单元格中换行:
\documentclass{article}
\usepackage[showframe]{geometry}
\usepackage{booktabs}
\usepackage{multirow, makecell, caption}
\usepackage{bm}
\let\pmb\bm
\usepackage{array}
\usepackage{adjustbox}
\usepackage{siunitx}
\begin{document}
\begin{table*}[h!]
\caption{Results with different numerical schemes for the simple Cartesian trajectory}
\label{Table:02}
\centering\sisetup{table-format=-1.2}\renewcommand\cellalign{lc}
\setlength\tabcolsep{3.3pt}
\begin{tabular}{clc*{6}{S}} \toprule
\multirowcell{2}{Radius of platforms \\ vs Limb lengths }& \multicolumn{1}{c}{Numerical Scheme} & & & & {Errors} & & & \\ \cmidrule{4-9}
& & & {$\bm{g}_x[\rm{mm}]$} & {$\bm{g}_y[\rm{mm}]$} & {$\bm{g}_z[\rm{mm}]$} & {$\bm{g}_{ψ}[^{ ∘ }]$} & { $\bm{g}_{θ}[^{ ∘ }]$} & {$\bm{g}_{ϕ}[^{ ∘ }]$} \\ \midrule
\addlinespace
$\mathbf {1:1}$ & Constant Jacobian & max & 0.39 & 1.27 & $\mathbf{\phantom{-}2.41}$ & 0.54 & 0.73 & 0.74 \\
& & min & $\mathbf{-4.52}$ & -1.38 & -1.88 & -0.56 & -0.72 & -0.72 \\
$\sigma_{\max}$ (1.08) & Updated Jacobian & max & 0.51 & $\mathbf{\phantom{-}0.92}$ & 0.85 & 0.58 & 0.68 & 0.68 \\
& & min & -0.56 & -0.84 & $\mathbf{ -0.93}$ & -0.58 & -0.83 & -0.81 \\
$\sigma_{\min}$ (0.54) & \multirowcell{2}{ Newton-Raphson\\ Method with $\mathtt{fsolve}$} & max & 0.50 &$\mathbf{\phantom{-}0.87} $ & 0.84 & 0.63 & 0.68 & 0.72 \\
& & min & -0.48 & $\mathbf{ -1.08}$ & -0.83 & -0.58 & -0.74 & -0.73 \\ \midrule
\addlinespace
$\mathbf {1:2}$ & Constant Jacobian & max & 0.41 & 1.47 & $\mathbf{\phantom{-}1.74}$ & 1.02 & 0.58 & 0.53 \\
& & min & $\mathbf{ -2.72}$ & -1.49 & -1.56 & -1.11 & -0.55 & -0.52 \\
$\sigma_{\max}$ (1.65) & Updated Jacobian & max & 0.43 & 1.37 & $\mathbf{\phantom{-}1.49}$ & 1.06 & 0.55 & 0.57 \\
& & min & -0.50 & $\mathbf{-1.55}$ & -1.52 & -0.87 & -0.57 & -0.59 \\
$\sigma_{\min}$ (0.44) & \multirowcell{2}{ Newton-Raphson\\ Method with $\mathtt{fsolve}$} &max & 0.38 & $\mathbf{\phantom{-}1.44}$ & 1.37 & 0.98 & 0.51 & 0.58 \\
& & min & -0.44 & $\mathbf{ -1.39}$ & -1.38 & -1.05 & -0.57 & -0.62 \\ \midrule
\addlinespace
$\mathbf{1:3}$ & Constant Jacobian & max & 0.37 & 1.94 & $\mathbf{\phantom{-}1.95}$ & 1.35 & 0.53 & 0.50 \\
& & min & -1.88 & -1.76 & $\mathbf{-2.06}$ & -1.24 & -0.63 & -0.55 \\
$\sigma_{\max}$ (2.34) & Updated Jacobian & max & 0.39 & 1.93 & $\mathbf{\phantom{-}2.10}$ & 1.37 & 0.54 & 0.51 \\
& & min & -0.42 & $\mathbf{-1.96}$ & -1.84 & -1.34 & -0.54 & -0.53 \\
$\sigma_{\min}$ (0.43) & \multirowcell{2}{ Newton-Raphson\\ Method with $\mathtt{fsolve}$} & max & 0.37 &$\mathbf{\phantom{-}1.93}$ & 1.87 & 1.54 & 0.60 & 0.58 \\
& & min & -0.39 & $ \mathbf{ -2.13} $ & -1.85 & -1.33 & -0.53 & -0.51 \\ \bottomrule
\end{tabular}
% \end{adjustbox}
\end{table*}
\end{document}