我无法在全宽页面中用乳胶写出这个矩阵。矩阵在下面的链接中给出。请帮我在乳胶中写出这个矩阵。
编辑: 感谢您的反馈。我使用了以下语法,但不幸的是我无法在页面内获得输出。帮帮我吧。
\[\begin{array}{*{9}{c}}
{1+\Delta t\theta } & {\rho _{,x} \Delta t} & {\rho_{,y} \Delta t} & {0} & {\rho \Delta t} & {0} & {0} & {0} & {0} \\
{\left(uu_{,x} +vu_{,y} \right)\Delta t} & {\rho +\rho u_{,x} \Delta t} & {\rho u_{,y} \Delta t} & {0} & {0} & {0} & {0} & {0} & {0} \\
{\left(uv_{,x} +vv_{,y} +\frac{1}{2\varepsilon {\kern 1pt} {\rm Fr}} \right)\Delta t} & {\rho v_{,x} \Delta t} & {\rho +\rho v_{,y} \Delta t} & {0} & {0} & {0} & {0} & {0} & {0} \\
{\left(uT_{,x} +vT_{,y} +\frac{\left(\gamma -1\right){\rm M}^{2} v}{2\varepsilon {\kern 1pt} {\rm Fr}} \right)\Delta t} & {\left(\rho T_{,x} -\left(\gamma -1\right){\rm M}^{2} p'_{,x} \right)\Delta t} & {\left(\rho T_{,y} -\left(\gamma -1\right){\rm M}^{2} p'_{,y} +\frac{\left(\gamma -1\right){\rm M}^{2} \rho }{2\varepsilon {\kern 1pt} {\rm Fr}} \right)\Delta t} & {\rho } & {-\frac{8}{3} \frac{\left(\gamma -1\right){\rm M}^{2} }{Re} \theta \Delta t} & {-2\frac{\left(\gamma -1\right){\rm M}^{2} }{Re} \omega \Delta t} & {0} & {0} & {-\left(\gamma -1\right){\rm M}^{2} } \\
{0} & {0} & {0} & {0} & {1} & {0} & {0} & {0} & {0} \\
{0} & {0} & {0} & {0} & {0} & {1} & {0} & {0} & {0} \\
{0} & {0} & {0} & {0} & {0} & {0} & {1} & {0} & {0} \\
{0} & {0} & {0} & {0} & {0} & {0} & {0} & {1} & {0} \\
{0} & {0} & {0} & {0} & {0} & {0} & {0} & {0} & {0}
\end{array}\]
答案1
\documentclass{amsart}
\begin{document}
\[
\begin{pmatrix}
{1+\Delta t\theta } &
{\rho _{,x} \Delta t} &
{\rho {,y} \Delta t} &
{0} &
{\rho \Delta t} &
{0} &
{0} &
{0} &
{0} \\
{\left(uu{,x} +vu_{,y} \right)\Delta t} &
{\rho +\rho u_{,x} \Delta t} &
{\rho u_{,y} \Delta t} & {0} & {0} & {0} & {0} & {0} & {0} \\
{\left(uv_{,x} +vv_{,y} +\frac{1}{2\varepsilon {\kern 1pt} {\rm Fr}} \right)\Delta t} &
{\rho v_{,x} \Delta t} &
{\rho +\rho v_{,y} \Delta t} &
{0} & {0} & {0} & {0} & {0} & {0} \\
X &
Y &
Z &
{\rho } &
W &
{-2\frac{\left(\gamma -1\right){\rm M}^{2} }{Re} \omega \Delta t} &
{0} & {0} &
{-\left(\gamma -1\right){\rm M}^{2} } \\
{0} & {0} & {0} & {0} & {1} & {0} & {0} & {0} & {0} \\
{0} & {0} & {0} & {0} & {0} & {1} & {0} & {0} & {0} \\
{0} & {0} & {0} & {0} & {0} & {0} & {1} & {0} & {0} \\
{0} & {0} & {0} & {0} & {0} & {0} & {0} & {1} & {0} \\
{0} & {0} & {0} & {0} & {0} & {0} & {0} & {0} & {0}
\end{pmatrix}
\]
where
\begin{align*}
X
&=
{\left(uT_{,x} +vT_{,y} +\frac{\left(\gamma -1\right){\rm M}^{2} v}{2\varepsilon {\kern 1pt} {\rm Fr}} \right)\Delta t},
\\
Y
&=
{\left(\rho T_{,x} -\left(\gamma -1\right){\rm M}^{2} p'{,x} \right)\Delta t},
\\
Z
&=
{\left(\rho T{,y} -\left(\gamma -1\right){\rm M}^{2} p'_{,y} +\frac{\left(\gamma -1\right){\rm M}^{2} \rho }{2\varepsilon {\kern 1pt} {\rm Fr}} \right)\Delta t},
\\
W
&=
{-\frac{8}{3} \frac{\left(\gamma -1\right){\rm M}^{2} }{Re} \theta \Delta t},
\end{align*}
\end{document}