我已经找到了几个问题来解决将文本嵌入方程式环境的问题,但是我还没有找到任何解决方案来解决这个问题。大多数人建议使用 \text 来隔离文本,但如果我有一段很长的文本,这种方法就不太好。有人能建议一种更简洁的方法吗?
我的代码如下:
这里我们关注的是类时间最大圆柱的柯西问题
\documentclass{article}
\usepackage{amsmath, amsthm, amsfonts}
\newcommand{\fii}{\varphi}
\begin{document}
\begin{equation} \label{CP} \tag{CP}
\begin{split}
\text{Given an initial, smoothly immersed curve}\ s\mapsto (\fii_0(s),0) \in M \text{satisfying} \\
\fii_0(s)=\fii_0(s+1), \text{and a smooth, uniformly timelike vector field}\ X(s)\in T_{(\fii_0(s),0)}M \\
\text{along the curve, find a time}\ T\in (0,\infty] \text{and a smooth, maximally immersed cylinder} \Sigma \\
\text{which may be parametrized such that}\ \fii(s,0)=\fii_0(s) \text{and such that}\ X(s)\in T_{(\fii_0(s),0)}\Sigma
\end{split}
\end{equation}
\end{document}
这是输出!
答案1
只需将其写为文本,并附上数学公式$inline$
,然后将其放置在环境\parbox
内部equation
。
\documentclass{article}
\usepackage{amsmath, amsthm, amsfonts}
\newcommand{\fii}{\varphi}
\begin{document}
\begin{equation} \label{CP} \tag{CP}
\parbox{4in}{%
Given an initial, smoothly immersed curve $s\mapsto (\fii_0(s),0) \in M$ satisfying
$\fii_0(s)=\fii_0(s+1)$, and a smooth, uniformly timelike vector field $X(s)\in
T_{(\fii_0(s),0)}M$ along the curve, find a time $T\in (0,\infty]$ and a smooth,
maximally immersed cylinder $\Sigma$ which may be parametrized such that
$\fii(s,0)=\fii_0(s)$ and such that $X(s)\in T_{(\fii_0(s),0)}\Sigma$%
}
\end{equation}
\end{document}