我尝试在段落中间建议 LaTeX 使用 分页\pagebreak
。但是,LaTeX 忽略了我的建议。有没有办法让 LaTeX 比预期更早地分页?
以下是我所讨论内容的一个例子(出于某种原因,我无法让1 in
此示例中的页边距对齐)。抱歉,填充内容很乱——我从我的论文中复制了它,因为我担心方程式或图形可能与分页符不起作用有关。滚动到底部查看我尝试分页的段落。
\documentclass[12pt, letterpaper] {article}
\usepackage[margin=1in, showframe, pass]{geometry} % one inch margins
\renewcommand{\baselinestretch}{2} % double space, safe for fancy headers
\usepackage{graphicx}
\usepackage{amssymb, amsmath, float,caption}
\usepackage{amsfonts}
\begin{document}
%%% ------------- FILLER: IGNORE --------------
\noindent
Here, $\text{rx}$ and $\text{tx}$ denote the endpoints of signal propagation and $s$ is the signal path. Using expressions 1 and 2 to expand $X$, this becomes:
%
\begin{equation}
I %\approx \int_{\text{rx}}^{\text{tx}} - \frac{1}{2} X \ ds
= -\frac{\kappa}{f^2} \int_{\text{rx}}^{\text{tx}} N_e \ ds
\label{ionosphere-effect}
\end{equation}
\noindent
where $\kappa = \frac{e^2}{8\pi^2\epsilon_0 m_e} \approx 40.3$.
Total electron content (TEC) is defined to be the integrated quantity of the free-electron density (i.e.\ plasma density) $N_e$ along some path. The expression for the first-order ionosphere effect in Equation 3 contains the expression for TEC, which is:
%
\begin{equation}
\text{TEC} = \int_{\text{rx}}^{\text{tx}} N_e \ ds
\label{tec-definition}
\end{equation}
It is usually convenient to express TEC in TEC units, where $1 \text{TECu} = 1\times10^{16} \frac{\text{electrons}}{m^2}$. As such, we define $\kappa_u = \kappa \times 10^{16}$ and express $I$ as:
%
\begin{equation}
I = -\frac{\kappa_u}{f^2} \text{TECu}
\label{tecu-eqn}
\end{equation}
\subsection{Geomagnetic Field}
%%% ------------- PAGEBREAK IN NEXT PP (not working) --------------
Expressions for the phase refractive index in equations 4 and 5 reveal that an
important aspect of the ionosphere is that it lies within influence of Earth's
\pagebreak magnetic field. The so-called geomagnetic field is a
magnetic dipole with field lines leaving near the geographic South pole
and entering near the geographic North pole. The orientation of a radio
wave vector relative to these field lines plays a role in determining higher-
order terms for ionosphere propagation error. This field is also
important because it constrains the movement of ionosphere plasma. The
charged plasma particles move more freely parallel to the magnetic field,
so density structures in the plasma tend to spread out along field lines [6].
\begin{figure}[!ht]
\centering
%\includegraphics[width=.5\textwidth]{../img/geomagnetic-field.png}
\caption[Geomagnetic field lines.]{Depicts how the ionosphere is embedded in Earth's geomagnetic field. Note how field lines leave Earth from the geographic South pole and enter through the geographic North pole. The magnetic inclination, which is the angle between the magnetic field vector and the tangent to Earth's surface, changes continuously over latitude with values of $\pm 90^\circ$ at the geomagnetic South/North poles and $0^\circ$ at the geomagnetic equator. \label{geomagnetic-field}}
\end{figure}
\end{document}
答案1
您下\pagebreak
单太晚了:
\documentclass[12pt, letterpaper] {article}
\usepackage[margin=1in, showframe, pass]{geometry} % one inch margins
\renewcommand{\baselinestretch}{2} % double space, safe for fancy headers
\usepackage{graphicx}
\usepackage{amssymb, amsmath, float,caption}
\usepackage{amsfonts}
\begin{document}
%%% ------------- FILLER: IGNORE --------------
\noindent
Here, $\text{rx}$ and $\text{tx}$ denote the endpoints of signal propagation and $s$ is the signal path. Using expressions 1 and 2 to expand $X$, this becomes:
%
\begin{equation}
I %\approx \int_{\text{rx}}^{\text{tx}} - \frac{1}{2} X \ ds
= -\frac{\kappa}{f^2} \int_{\text{rx}}^{\text{tx}} N_e \ ds
\label{ionosphere-effect}
\end{equation}
\noindent
where $\kappa = \frac{e^2}{8\pi^2\epsilon_0 m_e} \approx 40.3$.
Total electron content (TEC) is defined to be the integrated quantity of the free-electron density (i.e.\ plasma density) $N_e$ along some path. The expression for the first-order ionosphere effect in Equation 3 contains the expression for TEC, which is:
%
\begin{equation}
\text{TEC} = \int_{\text{rx}}^{\text{tx}} N_e \ ds
\label{tec-definition}
\end{equation}
It is usually convenient to express TEC in TEC units, where $1 \text{TECu} = 1\times10^{16} \frac{\text{electrons}}{m^2}$. As such, we define $\kappa_u = \kappa \times 10^{16}$ and express $I$ as:
%
\begin{equation}
I = -\frac{\kappa_u}{f^2} \text{TECu}
\label{tecu-eqn}
\end{equation}
\subsection{Geomagnetic Field}
%%% ------------- PAGEBREAK IN NEXT PP (not working) --------------
Expressions for the phase refractive index in equations 4 and 5 reveal that an
important \pagebreak aspect of the ionosphere is that it lies within influence of Earth's
magnetic field. The so-called geomagnetic field is a
magnetic dipole with field lines leaving near the geographic South pole
and entering near the geographic North pole. The orientation of a radio
wave vector relative to these field lines plays a role in determining higher-
order terms for ionosphere propagation error. This field is also
important because it constrains the movement of ionosphere plasma. The
charged plasma particles move more freely parallel to the magnetic field,
so density structures in the plasma tend to spread out along field lines [6].
\begin{figure}[!ht]
\centering
%\includegraphics[width=.5\textwidth]{../img/geomagnetic-field.png}
\caption[Geomagnetic field lines.]{Depicts how the ionosphere is embedded in Earth's geomagnetic field. Note how field lines leave Earth from the geographic South pole and enter through the geographic North pole. The magnetic inclination, which is the angle between the magnetic field vector and the tangent to Earth's surface, changes continuously over latitude with values of $\pm 90^\circ$ at the geomagnetic South/North poles and $0^\circ$ at the geomagnetic equator. \label{geomagnetic-field}}
\end{figure}
\end{document}