我怎样才能使表中的十进制数对齐,同时知道这些数字乘以 10 的幂。
\begin{table}[h]
\caption{Gradient of the log-likelihood using analytical expression and Matlab central finite differences approximation}
\label{tab:Gradient}
\begin{center}
\begin{tabular}{lll}
\toprule
Gradient & SCKF\textsubscript{analytical} & SCKF\textsubscript{central} \\
\midrule
Gradient w.r.t $\bm{a_e}$ & $1.63076989\cdot10^4$ & $1.63076989\cdot 10^4$ \\
Gradient w.r.t $\bm{\kappa_e}$ & $-0.37241217\cdot10^4$ & $-0.37241217\cdot 10^4$ \\
Gradient w.r.t $\bm{a_i}$ & $0.24443907\cdot10^4$ & $0.24443907\cdot 10^4$ \\
Gradient w.r.t $\bm{\kappa_i}$ & $-0.13204648\cdot10^4$ & $-0.13204648\cdot 10^4$ \\
Gradient w.r.t $\bm{c}$ & $0.01407282\cdot10^4$ & $0.01407282\cdot 10^4$ \\
Gradient w.r.t $\bm{d}$ & $0.38486354\cdot10^4$ & $0.38486354\cdot 10^4$ \\
Gradient w.r.t $\bm{\epsilon}$ & $-4.01712927\cdot10^4$ & $-4.01712927\cdot 10^4$ \\
Gradient w.r.t $\bm{\kappa_s}$ & $1.15246120\cdot10^4$ & $1.15246120\cdot 10^4$ \\
Gradient w.r.t $\bm{\tau}$ & $-0.00272403\cdot10^4$ & $-0.00272403\cdot 10^4$ \\
\bottomrule
\end{tabular}
\end{center}
\end{table}
答案1
这是一个具有简化代码的解决方案,基于siunitx
并且第一列看起来更美观:
\documentclass{article} %
\usepackage[utf8]{inputenc}%
\usepackage{booktabs, multirow, makecell, caption}%
\usepackage{mathtools}
\usepackage{siunitx}
\begin{document}
\begin{table}[h]
\sisetup{table-format = -1.8e2, table-number-alignment=center}
\caption{Gradient of the log-likelihood using analytical expression and Matlab central finite differences approximation}
\label{tab:Gradient}
\centering
\begin{tabular}{>{\boldmath$}l<{$}SS}
\toprule
\multicolumn{1}{c}{\makecell[c]{Gradient \\[-1ex]w.r.t. }} & {SCKF\textsubscript{analytical}} & {SCKF\textsubscript{central}} \\
\midrule
\multirowcell{9}{\begin{matrix*}[l]a_e \\ \kappa_e \\ a_i \\ \kappa_i \\ c \\ d \\ ϵ\\ \kappa_s \\ τ\end{matrix*}} & 1.63076989e4 & 1.63076989e4 \\
& -0.37241217e4 & -0.37241217e4 \\
& 0.24443907e4 & 0.24443907e4 \\
& -0.13204648e4 & -0.13204648e4 \\
& 0.01407282e4 & 0.01407282e4 \\
& 0.38486354e4 & 0.38486354e4 \\
& -4.01712927e4 & -4.01712927e4 \\
& 1.15246120e4 & 1.15246120e4 \\
& -0.00272403e4 & -0.00272403e4 \\
\bottomrule
\end{tabular}
\end{table}
\end{document}
答案2
包裹siunitx
是你的朋友:
\documentclass{article}
\usepackage{bm}
\usepackage{booktabs}
\usepackage{caption}
\usepackage{siunitx}
\sisetup{
exponent-product=\cdot,
}
\begin{document}
\begin{table}
\centering
\caption{Gradient of the log-likelihood using analytical expression
and Matlab central finite differences approximation}
\label{tab:Gradient}
\begin{tabular}{
l
S[table-format=-1.8e1]
S[table-format=-1.8e1]
}
\toprule
Gradient & SCKF\textsubscript{analytical} & SCKF\textsubscript{central} \\
\midrule
Gradient w.r.t $\bm{a_e}$ & 1.63076989e4 & 1.63076989e4 \\
Gradient w.r.t $\bm{\kappa_e}$ & -0.37241217e4 & -0.37241217e4 \\
Gradient w.r.t $\bm{a_i}$ & 0.24443907e4 & 0.24443907e4 \\
Gradient w.r.t $\bm{\kappa_i}$ & -0.13204648e4 & -0.13204648e4 \\
Gradient w.r.t $\bm{c}$ & 0.01407282e4 & 0.01407282e4 \\
Gradient w.r.t $\bm{d}$ & 0.38486354e4 & 0.38486354e4 \\
Gradient w.r.t $\bm{\epsilon}$ & -4.01712927e4 & -4.01712927e4 \\
Gradient w.r.t $\bm{\kappa_s}$ & 1.15246120e4 & 1.15246120e4 \\
Gradient w.r.t $\bm{\tau}$ & -0.00272403e4 & -0.00272403e4 \\
\bottomrule
\end{tabular}
\end{table}
\end{document}