答案1
像这样吗?
\documentclass{article}
\usepackage{mathtools} % for 'bmatrix*' env.; loads 'amsmath' package automatically
\begin{document}
Let
\[
A = \begin{bmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{bmatrix}
\]
be a full-rank $2\times2$ matrix.
Then $\det A\equiv\lvert A\rvert=a_{11}a_{22}-a_{12}a_{21}\ne0$ and
\[
A^{-1}=\begin{bmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{bmatrix}^{-1}
=\frac{1}{\lvert A\rvert}
\begin{bmatrix*}[r]
a_{22} & -a_{12} \\
-a_{21} & a_{11}
\end{bmatrix*} \,.
\]
\end{document}