LaTeX 错误文件和未定义的控制序列

LaTeX 错误文件和未定义的控制序列

大家好,我对 LaTeX 还很陌生,所以任何帮助我都会很感激。我有下面的代码,由于某种原因,由于许多错误(主要是由于错误文件和未定义的控制序列),我无法运行它。我也将错误代码附加到此帖子中。在此处输入图片描述如果您能运行我的代码并查看哪里出了问题我将不胜感激!!!

\documentclass[10pt]{article}
\usepackage[usenames]{color} %used for font color
\usepackage{amssymb} %maths
\usepackage{amsmath} %maths
\usepackage{graphicx}
\usepackage{booktabs}
\graphicspath{/} 

\section{1.6}
  \paragraph{6.} \mbox{} \\ \\ \\ \\ \\ \\

\section{1.7}
  \paragraph{8} Yes. $ \\ \\ \null \quad \quad \overline{A \cup B} $ \mbox{}: \\ \\ \null \quad \includegraphics{vennd} \\ \\ \null \quad \quad $\overline{A} \cap \overline{B} $ : \\ \null \quad \includegraphics{vennd}

\section{1.8}
  \paragraph{6a} $ [0,2] \cup [0,3] \cup [0,4] \cup \dots = [0,\infty) $
  \paragraph{6b} $ [0,2] \cap [0,3] \cap [0,4] \cap \dots = [0,2] $

\section{2.1}
  \paragraph{6} Statement is true.
  \paragraph{14} Not a Statement

\section{2.2}
  \paragraph{8.} $ P = (x = 0) \\ \null \quad \quad Q = (y = y) \\ \null \quad \quad P \lor Q $

\section{2.3}
  \paragraph{2} If a function is continuous, then it is differentiable.

\section{2.4}
  \paragraph{4} $ a \in \mathbb{Q} \iff 5a \in \mathbb{Q} $

\section{2.5}
  \paragraph{4}
    \begin{center}
      \begin{tabular}{|c|c|c|c|c|c|}
        $P$ & $Q$ & $P \or Q$ & $\lnot{(P \lor Q)}$ & $\lnot{P}$ & $\not{(P \lor \lnot{P}$ \\ \midrule 
T & T & T & F & F & F \\
T & F & T & F & F & F \\
F & T & T & F & T & T \\
F & F & F & T & T & T \\
\end{tabular}
\end{center}

\paragraph{8}
  \begin{center}
    \begin{tabular}{cccccc}
      $P$ & $Q$ & $R$ & $\lnot{R}$ & $Q \land \lnot{R}$ & $P \lor )Q \land \lnot{R})$ \\midrule
T & T & T & F & F & T
T & T & F & T & T & T
T & F & T & F & F & F
T & F & F & T & F & T
F & T & T & F & F & F
F & T & F & T & T & T
F & F & T & F & F & F
F & F & F & T & F & F
\end{tabular}
\end{center}
\paragraph{10} Suppose  $((P \land Q) \lor R) \imlies (R \lor S)$ is false. \\ Then, $ R = true must be false, therefore $$ R = false, S = false $. \\ Also, $ ((P \land Q) \lor R)$ must be t $ R = false $ then $ (P \land Q) $ must be true. Therefore $ P = true, Q = true $

\section{2.6}
  \paragraph{2}
    \begin{center}
      \begin{tabular}{cccccc}
        $P$ & $Q$ & $R$ $Q\land R$ & $P \lor (Q \land R)$ & $P \lor Q$ & $(P \lor R) $ \\ \midrule
      \end{tabular}
      \end{center}
  \paragraph{10}
      Yes. \\
      \begin{equation}
        \begin{split}
         (P \implies Q) \lor R & \stackrel{?}{=} \lnot((O \land \lnot{Q}) \land \lnot{R}) \stackrel{?}{=} (\lnot (P \land \lnot{Q}) \lor R) \\ & \stackrel{?}{=} ((\lnot{P} \lor R) \\ (\lnot P \lorQ) \lor R & = ((\lnot{P} \lor Q) \lor R)
         \end{split}
      \end{equation}

      Since $ P\implies Q $ is logically equivalent to $ \lnot P \lor Q $ :
      \begin{center}
        \begin{tabular}{|c|c|c|c|c|}
          $P$ & $Q$ & $P \implies Q$ & $\lnot P$ & $ \lnot P \lor Q $ \\ \midrule
          T & T & T & F & T \\
          T & F & F & F & F \\
          F & T & T & T & T \\
          F & F & T & T & T \\

        \end{tabular}
       \end{center}
\end{document}  

答案1

在某些情况下,预期的输出是什么并不清楚,但这会产生我认为您想要的输出,没有错误或警告。我在进行更改的代码中内联了注释。

\documentclass[10pt]{article}
\usepackage[usenames]{color} %used for font color
\usepackage{amssymb} %maths
\usepackage{amsmath} %maths
\usepackage{graphicx}
\usepackage{booktabs}

% only if your images are at the root of the filesystem
% \graphicspath{/} 



% \begin{document} was missing
\begin{document}

%  \\ \\ \\ \\ \\ \\
% make badness 10000 warnings (which is the maximum badness)

% \section{1.6} makes 1 1.6 which looks weird
\setcounter{section}{1}
\setcounter{subsection}{6}
\subsection{}
\subsubsection*{6.}

\subsection{}
  \subsubsection*{8} Yes. 

$\overline{A \cup B} $\\
 \includegraphics[height=1em]{example-image} % missing file {vennd}


$\overline{A} \cap \overline{B} $\\
\includegraphics[height=1em]{example-image} % missing file {vennd}

\stepcounter{section}
\subsection{}
  \subsubsection*{6a} $ [0,2] \cup [0,3] \cup [0,4] \cup \dots = [0,\infty) $
  \subsubsection*{6b} $ [0,2] \cap [0,3] \cap [0,4] \cap \dots = [0,2] $

\subsection{}
  \subsubsection*{6} Statement is true.
  \subsubsection*{14} Not a Statement

\subsection{}
  \subsubsection*{8.} $ P = (x = 0) \\ \null \quad \quad Q = (y = y) \\ \null \quad \quad P \lor Q $

\subsection{}
  \subsubsection*{2} If a function is continuous, then it is differentiable.

\subsection{}
  \subsubsection*{4} $ a \in \mathbb{Q} \iff 5a \in \mathbb{Q} $

\subsection{}
  \subsubsection*{4}
    \begin{center}
      \begin{tabular}{|c|c|c|c|c|c|}
        $P$ & $Q$ & $P 
% \lor not \or
\lor
% spurious {
Q$ & $\lnot{(P \lor Q)}$ & $\lnot{P}$ & $\not(P \lor \lnot{P}$ \\ \midrule 
T & T & T & F & F & F \\
T & F & T & F & F & F \\
F & T & T & F & T & T \\
F & F & F & T & T & T \\
\end{tabular}
\end{center}

\subsubsection*{8}
  \begin{center}
    \begin{tabular}{cccccc}
      $P$ & $Q$ & $R$ & $\lnot{R}$ & $Q \land \lnot{R}$ & $P \lor )Q \land \lnot{R})$ \\midrule
T & T & T & F & F & T \\
T & T & F & T & T & T \\
T & F & T & F & F & F \\
T & F & F & T & F & T \\
F & T & T & F & F & F \\
F & T & F & T & T & T \\
F & F & T & F & F & F \\
F & F & F & T & F & F 
\end{tabular}
\end{center}
\subsubsection*{10} Suppose  $((P \land Q) \lor R) 
% \implies not \imlies 
\implies (R \lor S)$ is false. \\ Then, $ R = true must be false, therefore $$ R = false, S = false $. \\ Also, $ ((P \land Q) \lor R)$ must be t $ R = false $ then $ (P \land Q) $ must be true. Therefore $ P = true, Q = true $

\subsection{}
  \subsubsection*{2}
    \begin{center}
      \begin{tabular}{cccccc}
        $P$ & $Q$ & $R$ $Q\land R$ & $P \lor (Q \land R)$ & $P \lor Q$ & $(P \lor R) $ \\ \midrule
      \end{tabular}
      \end{center}
  \subsubsection*{10}
      Yes.% never use \\ before a display math or at the end of a paragraph
      \begin{equation}
        \begin{split}
         (P \implies Q) \lor R & \stackrel{?}{=} \lnot((O \land \lnot{Q})
\land \lnot{R}) \stackrel{?}{=} (\lnot (P \land \lnot{Q}) \lor R) \\
& \stackrel{?}{=} ((\lnot{P} \lor R) \\ (\lnot P 
% \\lor Q not \lorQ
\lor Q) \lor R & = ((\lnot{P} \lor Q) \lor R)
         \end{split}
      \end{equation}

      Since $ P\implies Q $ is logically equivalent to $ \lnot P \lor Q $ :
      \begin{center}
        \begin{tabular}{|c|c|c|c|c|}
          $P$ & $Q$ & $P \implies Q$ & $\lnot P$ & $ \lnot P \lor Q $ \\ \midrule
          T & T & T & F & T \\
          T & F & F & F & F \\
          F & T & T & T & T \\
          F & F & T & T & T \\

        \end{tabular}
       \end{center}
\end{document} 

相关内容