我查看了多个类似的查询,但找不到与此特定问题相关的问题。我已将文档类别设置为fleqn
适用于文档中其他方程式的类别,但不适用于方程式 21 和 22(参见下面的图片和代码)。
我尝试将参数修改为 amsmath,fleqn
效果相同。也尝试使用,\begin{equation} \end{equation}
但没有成功。
\documentclass[fleqn]{llncs}
...
\begin{align}
SC1 \mathlarger{\sum\limits_{j \in J}} x_{kjw} + s_{jkw}^{1} - s_{jkw}^{2} = d_{zjkw} ~~ \forall z \in Z, j \in J, k \in K, w \in W \\
SC2 \mathlarger{\sum\limits_{k \in K}} x_{kjwz_1} + s_{zjkw}^{3} - s_{zjkw}^{4} = 1 \\
SC3 \mathlarger{\sum\limits_{k \in K}} x_{kjwZ} + s_{zjkw}^{5} - s_{zjkw}^{6} = 1 \\
SC4 \mathlarger{\sum\limits_{k \in K}} [x_{ijkw} + x_{i(j+1)kw}] + s_{ijw}^{7} - s_{ijw}^{8} = 0,~ \forall i \in I, j \in J, w \in W
\end{align}
答案1
您的对齐中没有&
指定任何对齐点( )(通常位于 = 之前)
答案2
对于左对齐,您需要一个对齐点,但在这种情况下您可以使用gather
,因为除了所有公式的最左边之外,没有真正好的对齐点。
与其说是令人惊奇,不如\mathlarger{\sum\limits_{j\in J}}
说是有一个适当的定义(这样你以后可以重新定义\lsum
为\sum
)。
\documentclass[fleqn]{llncs}
\usepackage{relsize}
\usepackage{amsmath}
\makeatletter
\newcommand{\lsum}{\DOTSB\mathop{\mathlarger{\sum}}\slimits@}
\makeatother
\begin{document}
\paragraph{Ugly}
\begin{align}
SC1 \mathlarger{\sum\limits_{j \in J}} x_{kjw} + s_{jkw}^{1} - s_{jkw}^{2} = d_{zjkw} ~~ \forall z \in Z, j \in J, k \in K, w \in W \\
SC2 \mathlarger{\sum\limits_{k \in K}} x_{kjwz_1} + s_{zjkw}^{3} - s_{zjkw}^{4} = 1 \\
SC3 \mathlarger{\sum\limits_{k \in K}} x_{kjwZ} + s_{zjkw}^{5} - s_{zjkw}^{6} = 1 \\
SC4 \mathlarger{\sum\limits_{k \in K}} [x_{ijkw} + x_{i(j+1)kw}] + s_{ijw}^{7} - s_{ijw}^{8} = 0,~ \forall i \in I, j \in J, w \in W
\end{align}
\paragraph{Bad}
\begin{gather}
\text{SC1}\,
\lsum_{j \in J} x_{kjw} + s_{jkw}^{1} - s_{jkw}^{2} = d_{zjkw}
\quad \forall z \in Z, j \in J, k \in K, w \in W \\
\text{SC2}\,
\lsum_{k \in K} x_{kjwz_1} + s_{zjkw}^{3} - s_{zjkw}^{4} = 1 \\
\text{SC3}\,
\lsum_{k \in K} x_{kjwZ} + s_{zjkw}^{5} - s_{zjkw}^{6} = 1 \\
\text{SC4}\,
\lsum_{k \in K} [x_{ijkw} + x_{i(j+1)kw}] + s_{ijw}^{7} - s_{ijw}^{8} = 0,
\quad \forall i \in I, j \in J, w \in W
\end{gather}
\paragraph{Good}
\begin{gather}
\text{SC1}\,
\sum_{j \in J} x_{kjw} + s_{jkw}^{1} - s_{jkw}^{2} = d_{zjkw}
\quad \forall z \in Z, j \in J, k \in K, w \in W \\
\text{SC2}\,
\sum_{k \in K} x_{kjwz_1} + s_{zjkw}^{3} - s_{zjkw}^{4} = 1 \\
\text{SC3}\,
\sum_{k \in K} x_{kjwZ} + s_{zjkw}^{5} - s_{zjkw}^{6} = 1 \\
\text{SC4}\,
\sum_{k \in K} [x_{ijkw} + x_{i(j+1)kw}] + s_{ijw}^{7} - s_{ijw}^{8} = 0,
\quad \forall i \in I, j \in J, w \in W
\end{gather}
\end{document}