我尝试用不同的方法将一个长等式(分子和分母)拆分成多行(如何将方程式拆分为两行(或更多行)和如何在 Latex 中包装长公式),但它们不起作用 (latex 给出错误)。我该如何解决这个问题?
表达式(由 Mathematica 生成)如下(分割应发生在存在指数项的地方):
y(t) = h(t) = \frac{e^{t
\left(-\frac{k_1}{2}-\frac{k_2}{2}-\frac{k_{12}}{2}-\frac{k_{21}}{2}-\frac{1}{2
} \sqrt{\left(k_1+k_2+k_{12}+k_{21}\right){}^2-4 \left(k_1 k_2+k_{21} k_2+k_1
k_{12}\right)}\right)} k_1 -e^{t
\left(-\frac{k_1}{2}-\frac{k_2}{2}-\frac{k_{12}}{2}-\frac{k_{21}}{2}+\frac{1}{2
} \sqrt{\left(k_1+k_2+k_{12}+k_{21}\right){}^2-4 \left(k_1 k_2+k_{21} k_2+k_1
k_{12}\right)}\right)} k_1-e^{t
\left(-\frac{k_1}{2}-\frac{k_2}{2}-\frac{k_{12}}{2}-\frac{k_{21}}{2}-\frac{1}{2
} \sqrt{\left(k_1+k_2+k_{12}+k_{21}\right){}^2-4 \left(k_1 k_2+k_{21} k_2+k_1
k_{12}\right)}\right)} k_2+e^{t
\left(-\frac{k_1}{2}-\frac{k_2}{2}-\frac{k_{12}}{2}-\frac{k_{21}}{2}+\frac{1}{2
} \sqrt{\left(k_1+k_2+k_{12}+k_{21}\right){}^2-4 \left(k_1 k_2+k_{21} k_2+k_1
k_{12}\right)}\right)} k_2-e^{t
\left(-\frac{k_1}{2}-\frac{k_2}{2}-\frac{k_{12}}{2}-\frac{k_{21}}{2}-\frac{1}{2
} \sqrt{\left(k_1+k_2+k_{12}+k_{21}\right){}^2-4 \left(k_1 k_2+k_{21} k_2+k_1
k_{12}\right)}\right)} k_{12}+e^{t
\left(-\frac{k_1}{2}-\frac{k_2}{2}-\frac{k_{12}}{2}-\frac{k_{21}}{2}+\frac{1}{2
} \sqrt{\left(k_1+k_2+k_{12}+k_{21}\right){}^2-4 \left(k_1 k_2+k_{21} k_2+k_1
k_{12}\right)}\right)} k_{12}+e^{t
\left(-\frac{k_1}{2}-\frac{k_2}{2}-\frac{k_{12}}{2}-\frac{k_{21}}{2}-\frac{1}{2
} \sqrt{\left(k_1+k_2+k_{12}+k_{21}\right){}^2-4 \left(k_1 k_2+k_{21} k_2+k_1
k_{12}\right)}\right)} k_{21}-e^{t
\left(-\frac{k_1}{2}-\frac{k_2}{2}-\frac{k_{12}}{2}-\frac{k_{21}}{2}+\frac{1}{2
} \sqrt{\left(k_1+k_2+k_{12}+k_{21}\right){}^2-4 \left(k_1 k_2+k_{21} k_2+k_1
k_{12}\right)}\right)} k_{21}+e^{t
\left(-\frac{k_1}{2}-\frac{k_2}{2}-\frac{k_{12}}{2}-\frac{k_{21}}{2}-\frac{1}{2
} \sqrt{\left(k_1+k_2+k_{12}+k_{21}\right){}^2-4 \left(k_1 k_2+k_{21} k_2+k_1
k_{12}\right)}\right)} \sqrt{\left(k_1+k_2+k_{12}+k_{21}\right){}^2-4 \left(k_1
k_2+k_{21} k_2+k_1 k_{12}\right)}+e^{t
\left(-\frac{k_1}{2}-\frac{k_2}{2}-\frac{k_{12}}{2}-\frac{k_{21}}{2}+\frac{1}{2
} \sqrt{\left(k_1+k_2+k_{12}+k_{21}\right){}^2-4 \left(k_1 k_2+k_{21} k_2+k_1
k_{12}\right)}\right)} \sqrt{\left(k_1+k_2+k_{12}+k_{21}\right){}^2-4 \left(k_1
k_2+k_{21} k_2+k_1 k_{12}\right)}}{2
\sqrt{\left(k_1+k_2+k_{12}+k_{21}\right){}^2-4 \left(k_1 k_2+k_{21} k_2+k_1
k_{12}\right)} V_1}
感谢您的帮助。
答案1
我希望我算得没错:)
\documentclass{article}
\usepackage{amsmath}
\begin{document}
\begin{align*}
A&:=\sqrt{(k_1+k_2+k_{12}+k_{21})^2-4(k_1k_2+k_{21}k_2+k_1k_{12})}\\
B&:=k_1+k_2+k_{12}\\
C&:=k_1-k_2-k_{12}\\
a(t)&:=\exp\left(-\frac{A+B}{2}t\right)\\
b(t)&:=\exp\left(\frac{A-B}{2}t\right)\\
y(t)&=h(t)=\frac{a(t)(A+C+k_{21})+b(t)(A-C)-k_{21}}{2AV_1}
\end{align*}
\end{document}