你好,我需要一些关于下面等式右侧 Meijer G 函数的 LaTeX 代码的帮助。我想知道下图所示函数的 LaTeX 命令是什么。
对于一般的 Meijer G 函数,以下 LaTeX 代码有效:
\DeclarePairedDelimiterX\MeijerM[3]{\lparen}{\rparen}%
{\,#3\delimsize\vert\begin{smallmatrix}#1 \\ #2\end{smallmatrix}}
\newcommand\MeijerG[8][]{%
G^{\,#2,#3}_{#4,#5}\MeijerM[#1]{#6}{#7}{#8}}
\WithSuffix\newcommand\MeijerG*[7]{%
G^{\,#1,#2}_{#3,#4}\MeijerM*{#5}{#6}{#7}}
例如,LaTeX 代码 \MeijerG*{1}{1}{1}{1}{0}{0}{x} 将生成如下 Meijer G 函数:
提前致谢。
答案1
使用更方便的语法:
\documentclass{article}
\usepackage{geometry} % more generous width
\usepackage{amsmath}
\usepackage{xparse}
\ExplSyntaxOn
\NewDocumentCommand{\MeijerG}{smmmm}
{
\IfBooleanTF{#1}
{
\vic_meijerg:nnnnnn { #2 } { #3 } { #4 } { #5 } { small } { }
}
{
\vic_meijerg:nnnnnn { #2 } { #3 } { #4 } { #5 } { } { \; }
}
}
\seq_new:N \l__vic_meijerg_args_in_seq
\seq_new:N \l__vic_meijerg_args_out_seq
\cs_new_protected:Nn \vic_meijerg:nnnnnn
{
\seq_set_split:Nnn \l__vic_meijerg_args_in_seq { | } { #3 }
\seq_clear:N \l__vic_meijerg_args_out_seq
\seq_map_inline:Nn \l__vic_meijerg_args_in_seq
{
\seq_put_right:Nn \l__vic_meijerg_args_out_seq
{
\begin{#5matrix} ##1 \end{#5matrix}
}
}
G\sp{#1}\sb{#2}
\left(
\seq_use:Nn \l__vic_meijerg_args_out_seq { #6\middle|#6 }
#6\middle|#6
#4
\right)
}
\ExplSyntaxOff
\begin{document}
In line
$
\MeijerG*
{n,m:m_1,n_1:m_2,n_2} % superscript
{q,p:p_1,q_1:p_2,q_2} % subscript
{
1-\alpha-b_1,\ldots,1-\alpha-b_q\\
1-\alpha-a_1,\ldots,1-\alpha-a_p
|
a_{11},\ldots,a_{1p_1} \\
b_{11},\ldots,b_{1q_1}
|
a_{21},\ldots,a_{2p_1}\\
b_{21},\ldots,b_{2q_1}
}
{\frac{x}{z},\frac{y}{z}}
$
and $\MeijerG*{1,1}{1,1}{ 0 \\ 0 } { x }$. Display:
\begin{gather}
\MeijerG
{n,m:m_1,n_1:m_2,n_2} % superscript
{q,p:p_1,q_1:p_2,q_2} % subscript
{
1-\alpha-b_1,\ldots,1-\alpha-b_q\\
1-\alpha-a_1,\ldots,1-\alpha-a_p
|
a_{11},\ldots,a_{1p_1} \\
b_{11},\ldots,b_{1q_1}
|
a_{21},\ldots,a_{2p_1}\\
b_{21},\ldots,b_{2q_1}
}
{\frac{x}{z},\frac{y}{z}}
\\
\MeijerG{1,1}{1,1}{ 0 \\ 0 } { x }
\end{gather}
\end{document}
*-version 用于以内联方式打印公式。
答案2
此代码提供了您在图像中给出的公式。
\documentclass{article}
\begin{document}
\begin{math}
G_{q,p:p_1,q_1:p_2,q_2}^{n,m:m_1,n_1:m_2,n_2}\left(
\begin{array}{c}
1-\alpha-b_1,\ldots,1-\alpha-b_q\\
1-\alpha-a_1,\ldots,1-\alpha-a_p
\end{array}\middle\vert
\begin{array}{c}
a_{11},\ldots,a_{1p_1}\\
b_{11},\ldots,b_{1q_1}\\
\end{array}\middle\vert
\begin{array}{c}
a_{21},\ldots,a_{2p_1}\\
b_{21},\ldots,b_{2q_1}\\
\end{array}\middle\vert
\frac{x}{z},\frac{y}{z}
\right)
\end{math}
\end{document}