编译后的 PDF 中显示损坏的框。请参阅下面的 LaTeX 代码:
\documentclass{article}
\usepackage{graphicx}
\usepackage{a4wide}
\usepackage{tabularx}
\makeatletter
\newenvironment{problem}[2][]{%
\def\problem@arg{#1}%
\def\problem@framed{framed}%
\def\problem@lined{lined}%
\def\problem@doublelined{doublelined}%
\ifx\problem@arg\@empty%
\def\problem@hline{}%
\else%
\ifx\problem@arg\problem@doublelined%
\def\problem@hline{\hline\hline}%
\else%
\def\problem@hline{\hline}%
\fi%
\fi%
\ifx\problem@arg\problem@framed%
\def\problem@table{\tabularx{\textwidth}{|>{\bfseries}lX|c}}%
\def\problem@title{\multicolumn{2}{|l|}{%
\raisebox{-\fboxsep}{\textsc{\Large #2}}%
}}%
\else
\def\problem@table{\tabularx{\textwidth}{>{\bfseries}lXc}}%
\def\problem@title{\multicolumn{2}{l}{%
\raisebox{-\fboxsep}{\textsc{\Large #2}}%
}}%
\fi%
\bigskip\par\noindent%
\renewcommand{\arraystretch}{1.2}%
\problem@table%
\problem@hline%
\problem@title\\[2\fboxsep]%
}{%
\\\problem@hline%
\endtabularx%
\medskip\par%
}
\makeatother
\section{Introduction}
Given two graphs $G =(V,E_1)$ and $H = (V,E_2)$ are said to be isomorphic if there exists a bijection $\phi: V \mapsto V$ that preserves the edges and non-edges. Similarliy two groups $(G,\circ)$ and $(H,\times )$ are said to be isomorphic if there exist an bijective map from $\pi : G \mapsto H$ such that $\forall a,b \in G, \pi(a\circ b) = \pi(a) \times \pi(b)$.
Graph isomorphism is strongly related to group theoretic problems like group isomorphism, group intersection etc. Grpah Isomorphism is known to be in $\mathsf{NP}$, not known to be in $\mathsf{P}$ and very unlikely to be $\mathsf{NP}$-complete.
\begin{problem}[framed]{Graph Isomorphism (GI)}
Inpu: & Two graphs $G=(V,E_1)$ and $H=(V,E_2)$. \\
Problem: & Is $G$ isomorphic to $H$? \\
\end{problem}
\end{document}
答案1
请不要a4wide
再使用这个包!查看卡坦!
要摆脱损坏的盒子,您必须删除/注释掉以下 MWE 中\\
标记的 I :<=====
\documentclass{article}
%\usepackage{a4wide} % <=========================== use package geometry
\usepackage[a4paper]{geometry}
\usepackage{graphicx}
\usepackage{tabularx}
\makeatletter
\newenvironment{problem}[2][]{%
\def\problem@arg{#1}%
\def\problem@framed{framed}%
\def\problem@lined{lined}%
\def\problem@doublelined{doublelined}%
\ifx\problem@arg\@empty%
\def\problem@hline{}%
\else%
\ifx\problem@arg\problem@doublelined%
\def\problem@hline{\hline\hline}%
\else%
\def\problem@hline{\hline}%
\fi%
\fi%
\ifx\problem@arg\problem@framed%
\def\problem@table{\tabularx{\textwidth}{|>{\bfseries}lX|c}}%
\def\problem@title{\multicolumn{2}{|l|}{%
\raisebox{-\fboxsep}{\textsc{\Large #2}}%
}}%
\else
\def\problem@table{\tabularx{\textwidth}{>{\bfseries}lXc}}%
\def\problem@title{\multicolumn{2}{l}{%
\raisebox{-\fboxsep}{\textsc{\Large #2}}%
}}%
\fi%
\bigskip\par\noindent%
\renewcommand{\arraystretch}{1.2}%
\problem@table%
\problem@hline%
\problem@title\\[2\fboxsep]%
}{%
% \\% <=============================================================
\problem@hline%
\endtabularx%
\medskip\par%
}
\makeatother
\begin{document}
\section{Introduction}
Given two graphs $G =(V,E_1)$ and $H = (V,E_2)$ are said to be
isomorphic if there exists a bijection $\phi: V \mapsto V$ that
preserves the edges and non-edges. Similarliy two groups $(G,\circ)$ and
$(H,\times )$ are said to be isomorphic if there exist an bijective map
from $\pi : G \mapsto H$ such that
$\forall a,b \in G, \pi(a\circ b) = \pi(a) \times \pi(b)$.
Graph isomorphism is strongly related to group theoretic problems like
group isomorphism, group intersection etc. Grpah Isomorphism is known
to be in $\mathsf{NP}$, not known to be in $\mathsf{P}$ and very
unlikely to be $\mathsf{NP}$-complete.
\begin{problem}[framed]{Graph Isomorphism (GI)}
Input: & Two graphs $G=(V,E_1)$ and $H=(V,E_2)$. \\
Problem: & Is $G$ isomorphic to $H$? \\
\end{problem}
\end{document}
您将获得结果: