我正在尝试将长分数拆分成多行。我正在使用 mathtools 包和拆分分数来拆分长分母。但是,它似乎不起作用,请参见附图。以下是完整代码。任何帮助都将不胜感激。
\documentclass[12pt, draftclsnofoot, onecolumn]{IEEEtran}
\usepackage{mathtools} % loads 'amsmath' package automatically
\begin{document}
\begin{equation}
\dfrac{A_{xy,\text{MN}}^{p}}{[![\splitdfrac][1]][1]{\Gamma^{2}+{ {\sum_{x_{p}\in \Phi_{p}^{\mathcal{U}^{e}}\backslash d_{p}} \beta {{A}_{t,p}^{MN}}g_{x_{p}}^{\mathcal{U}^{e}}\lVert x_{p}\rVert^{-\alpha}}+{\sum_{y_{q}\in\Phi_{q}^{\mathcal{U}^{c}}} {{A}_{t,q}^{MN}}g_{y_{q}}^{\mathcal{U}^{c}}\lVert y_{q}\rVert^{-\alpha}}}+{{\sum_{{z_{p}}\in\Phi_{u}^{\mathcal{U}^{e}}\backslash {_\text{XYZ}}}}} {{A}_{u}^{UL}}g_{z_{p}}^{\mathcal{U}^{e}}\lVert {z_{p}\rVert^{-\alpha}}+{\sum_{{w_{q}}\in\Phi_{u}^{\mathcal{U}^{c}}}} {{A}_{u}^{UL}}g_{w_{q}}^{\mathcal{U}^{c}}\lVert {w_{q}\rVert^{-\alpha}}}, \text{for Downlink }}
\end{equation}
\end{document}
答案1
省略一些看似无关的部分(例如\text{for Downlink}
),我想出了以下可能的解决方案。
我忍不住要说,您的代码包含的花括号对比下面的代码多得多。在数学模式下,将材料包裹在额外的花括号对中并非完全无害;此外,它肯定会使解析代码变得比应有的繁琐得多。另外,我已经将 的实例替换\backslash
为\setminus
。
\documentclass[12pt, draftclsnofoot, onecolumn]{IEEEtran}
\usepackage{mathtools}
\DeclarePairedDelimiter\norm\lVert\rVert
\begin{document}
\begin{equation}
\dfrac{A_{xy,\text{MN}}^{p}}{%
\splitdfrac{% first part of splitdfrac to follow
\Gamma^{2}
+\sum_{x_p\in \Phi_p^{\mathcal{U}^e}\setminus d_p}
\beta A_{t,p}^{\text{MN}} g_{x_p}^{\mathcal{\,U}^e}
\norm{x_p}^{-\alpha}
+\sum_{y_q\in\Phi_q^{\mathcal{U}^c}}
A_{t,q}^{\text{MN}} g_{y_q}^{\mathcal{\,U}^c}
\norm{y_q}^{-\alpha}}{% 2nd part of splitdfrac to follow
+\sum_{z_p\in\Phi_{u}^{\mathcal{U}^e}\setminus\text{XYZ}}
A_u^{UL} g_{z_p}^{\mathcal{\,U}^e}
\norm{z_p}^{-\alpha}
+\sum_{w_q\in\Phi_{u}^{\mathcal{U}^c}}
A_{u}^{UL}g_{w_q}^{\mathcal{\,U}^c}
\norm{w_q}^{-\alpha}}
}
\end{equation}
\end{document}