打印带边框的页面内的点

打印带边框的页面内的点

我正在准备考试,除了首页外,所有页面都有边框。现在我想在问题后打印要点,但尽管尝试了各种方法,要点还是打印在页边空白处或无法看到。在这方面,我将不胜感激。这是代码。

\documentclass[addpoints, 12pt]{exam}
\usepackage{amsmath,amsthm,amssymb,amsfonts}
\usepackage{array}
\usepackage{tabularx}
\usepackage[table]{xcolor}
\usepackage[most]{tcolorbox}
\usepackage{fancybox}
\usepackage{graphicx}
\usepackage[vmargin={10mm,20mm},hmargin={10mm,10mm}]{geometry}
\usepackage{array}
\usepackage{setspace}
\pagestyle{plain}
\begin{document}
\fancypage{\setlength{\fboxsep}{0pt}\fbox}{}

\qformat{\textbf{Q \thequestion}\hfill}
\begin{questions}
    \pointsdroppedatright
    \bracketedpoints

    \question
    \begin{parts}
        \part[2] Use the formula for $\cos{(A+B)}$ and $\cos{(A-B)}$ to show that $$\cos{(A+B)}+\cos{(A-B)} \equiv 2\cos{A}\cos{B}.$$
        \droppoints
        \fillwithdottedlines{1.5in}
        \part[3] Hence show that $$\cos{P}+\cos{Q} \equiv 2\cos\left( \frac{P+Q}{2}\right)\cos{\left( \frac{P-Q}{2}\right) }.$$

        \fillwithdottedlines{\stretch{1}}
        %   \part[3] Deduce that $$\frac{\cos{4x}+\cos{2x}}{2\cos{3x}} \equiv \cos{x}.$$
        %   \droppoints
        %   \fillwithdottedlines{1.5in}
    \end{parts}
    \droptotalpoints

    \newpage
    \question
    \begin{parts}
        \part[2] new part
        \droppoints

        \part[4] another part
        \droppoints
    \end{parts}
    \droptotalpoints

\end{questions}
\end{document}

答案1

您可以使用 移动点\setlength{\rightpointsmargin}{},并使用 增加页面边框\fancypage{\setlength{\fboxsep}{5pt}\fbox}{}。我还将 更改为\totalformat更类似于\qformat并删除了不相关的包。

以下是完整的代码。

\documentclass[addpoints, 12pt]{exam}
\usepackage{amsmath,amsthm,amssymb,amsfonts}
\usepackage{fancybox}
\usepackage[vmargin={10mm,20mm},hmargin={10mm,10mm}]{geometry}
\pagestyle{plain}

\qformat{\textbf{Q\,\thequestion}\hfill}
\totalformat{Total for Q\,\thequestion: [\totalpoints]}
\pointsdroppedatright
\bracketedpoints
\setlength{\rightpointsmargin}{2.65cm}
\fancypage{\setlength{\fboxsep}{5pt}\fbox}{}

\begin{document}
\begin{questions}

    \question
    \begin{parts}
        \part[2] Use the formula for $\cos{(A+B)}$ and $\cos{(A-B)}$ to show that $$\cos{(A+B)}+\cos{(A-B)} \equiv 2\cos{A}\cos{B}.$$
        \droppoints
        \fillwithdottedlines{1.5in}
        \part[3] Hence show that $$\cos{P}+\cos{Q} \equiv 2\cos\left( \frac{P+Q}{2}\right)\cos{\left( \frac{P-Q}{2}\right) }.$$

        \fillwithdottedlines{\stretch{1}}
    \end{parts}
    \droptotalpoints

    \newpage
    \question
    \begin{parts}
        \part[2] new part
        \droppoints

        \part[4] another part
        \droppoints
    \end{parts}
    \droptotalpoints

\end{questions}
\end{document}

答案2

此软件包上的文档解释了此行为。请执行\setlength{\rightpointsmargin}{somelength}点与文档右边框之间的间距。请参阅第 4.3.10 节这里

相关内容