我正在准备考试,除了首页外,所有页面都有边框。现在我想在问题后打印要点,但尽管尝试了各种方法,要点还是打印在页边空白处或无法看到。在这方面,我将不胜感激。这是代码。
\documentclass[addpoints, 12pt]{exam}
\usepackage{amsmath,amsthm,amssymb,amsfonts}
\usepackage{array}
\usepackage{tabularx}
\usepackage[table]{xcolor}
\usepackage[most]{tcolorbox}
\usepackage{fancybox}
\usepackage{graphicx}
\usepackage[vmargin={10mm,20mm},hmargin={10mm,10mm}]{geometry}
\usepackage{array}
\usepackage{setspace}
\pagestyle{plain}
\begin{document}
\fancypage{\setlength{\fboxsep}{0pt}\fbox}{}
\qformat{\textbf{Q \thequestion}\hfill}
\begin{questions}
\pointsdroppedatright
\bracketedpoints
\question
\begin{parts}
\part[2] Use the formula for $\cos{(A+B)}$ and $\cos{(A-B)}$ to show that $$\cos{(A+B)}+\cos{(A-B)} \equiv 2\cos{A}\cos{B}.$$
\droppoints
\fillwithdottedlines{1.5in}
\part[3] Hence show that $$\cos{P}+\cos{Q} \equiv 2\cos\left( \frac{P+Q}{2}\right)\cos{\left( \frac{P-Q}{2}\right) }.$$
\fillwithdottedlines{\stretch{1}}
% \part[3] Deduce that $$\frac{\cos{4x}+\cos{2x}}{2\cos{3x}} \equiv \cos{x}.$$
% \droppoints
% \fillwithdottedlines{1.5in}
\end{parts}
\droptotalpoints
\newpage
\question
\begin{parts}
\part[2] new part
\droppoints
\part[4] another part
\droppoints
\end{parts}
\droptotalpoints
\end{questions}
\end{document}
答案1
您可以使用 移动点\setlength{\rightpointsmargin}{}
,并使用 增加页面边框\fancypage{\setlength{\fboxsep}{5pt}\fbox}{}
。我还将 更改为\totalformat
更类似于\qformat
并删除了不相关的包。
以下是完整的代码。
\documentclass[addpoints, 12pt]{exam}
\usepackage{amsmath,amsthm,amssymb,amsfonts}
\usepackage{fancybox}
\usepackage[vmargin={10mm,20mm},hmargin={10mm,10mm}]{geometry}
\pagestyle{plain}
\qformat{\textbf{Q\,\thequestion}\hfill}
\totalformat{Total for Q\,\thequestion: [\totalpoints]}
\pointsdroppedatright
\bracketedpoints
\setlength{\rightpointsmargin}{2.65cm}
\fancypage{\setlength{\fboxsep}{5pt}\fbox}{}
\begin{document}
\begin{questions}
\question
\begin{parts}
\part[2] Use the formula for $\cos{(A+B)}$ and $\cos{(A-B)}$ to show that $$\cos{(A+B)}+\cos{(A-B)} \equiv 2\cos{A}\cos{B}.$$
\droppoints
\fillwithdottedlines{1.5in}
\part[3] Hence show that $$\cos{P}+\cos{Q} \equiv 2\cos\left( \frac{P+Q}{2}\right)\cos{\left( \frac{P-Q}{2}\right) }.$$
\fillwithdottedlines{\stretch{1}}
\end{parts}
\droptotalpoints
\newpage
\question
\begin{parts}
\part[2] new part
\droppoints
\part[4] another part
\droppoints
\end{parts}
\droptotalpoints
\end{questions}
\end{document}
答案2
此软件包上的文档解释了此行为。请执行\setlength{\rightpointsmargin}{somelength}
点与文档右边框之间的间距。请参阅第 4.3.10 节这里