长而可旋转的桌子

长而可旋转的桌子

在此处输入图片描述我正在尝试制作一个跨多个页面(longtable)且超过页面宽度的表格。有没有办法将这两者结合起来?我尝试了 sideaystable、a​​djustbox 和 Landscape,但它们似乎与 longtable 不兼容。

\documentclass{article}
\usepackage{longtable}
\usepackage{rotating}
\usepackage{pdflscape}

\begin{document}    
\begin{landscape}
\begin{longtable}[h]
\centering
\caption{Post-combustion CCS technologies}
\label{tab:CCS}
\begin{tabular}{|l|l|l|l|}
\toprule
Technology & Principle & Advantages & Disadvantages  \\
\toprule
Absorption          & CO\textsubscript{2} is contacted with a solvent & Commercially available & High CAPEX, OPEX, efficiency losses \\
or (chemical) scrubbing & in a packed column, counter flow            & Assumed to be mature   & due to energy demand for regeneration\\
                & Solvent sorbs more soluble CO\textsubscript{2}  & Know-how from industry & Transferable to power plants?\\
                & over other compounds in flue gas                & e.g. acid gas removal, & Accumulation of trace compounds \\ 
                & Purer CO\textsubscript{2} released in regeneration & CO\textsubscript{2} removal in IGCC  & Foaming: reduces absorption efficiency \\ 
                & Solvent: amines, alkaline earth                 & Low consumables demand & Environmental impact of solvents: \\
                & solutions, glycol, ammonia, water               & Solvent regeneration   & (eco)toxicity and corrosion\\ %Add half midrule?
                & Upcoming: aqueous ammonia                       & High CO\textsubscript{2} capacity & Volatile \\
                &                                                 & Lower heat demand, lower OPEX & Cooling of flue gas to 15-30\textdegree C needed \\
                &                                                 & Small make-up demand:  & to minimise solvent emission\\
                &                                                 & tolerance to O\textsubscript{2} & \\
                &                                                 & Potential for simultaneous SO\textsubscript{x}, NO\textsubscript{x} removal by forming ammonia sulphate and nitrate (can be sold as fertilisers) & \\
                & Ionic liquids: salt of                          & Stable up 100s\textdegree C: & Very expensive chemicals (new)\\
                & organic cation +                                & no cooling of flue gas needed & High viscosity: \\
                & (in)organic anion                               & Small energy demand for regeneration & unpractical \\
                & Physical solvent for CO\textsubscript{2}        & (physical sorption)    & \\
                & Solubility depends on anion                     & Simultaneous SO\textsubscript{x} removal & \\
\midrule 
Adsorption          & CO\textsubscript{2} is contacted with a adsorbent & Simple concept,       & Purifying steps complicate process \\
                & in a bed reactor                                  & low CAPEX             & Rather impure by-product \\
                & Preferential adsorption of CO\textsubscript{2}    & Regeneration by tempe-& Not for too strongly binding species \\
                & Physisorption: Van der Waals                      & rature and pressure   &  \\
                & forces between surface of adsorbent               & swing adsorption      &  \\
                & and CO\textsubscript{2}.                          & (TSA, PSA) \nomenclature{TSA}{Temperature swing adsorption} \nomenclature{PSA}{Pressure swing adsorption} at lower &  \\  
                & Chemisorption: interaction between                & cost and energy       &  \\
                & functional groups of the adsorbate                & demand than for       &  \\ 
                & and CO\textsubscript{2} to form weak bonds.       & absorption, low OPEX  &   \\
                & e.g. clays, zeolites, activated carbon,           & Tunable affinity of   &   \\
                & carbon nanotubes, metal-organic                   & organics: addition of &   \\
                & frameworks (MOFs) & functional groups&   \\
                & CO\textsubscript{2} adsorption potential depends  & e.g. nitrogenous groups&   \\
                & on functional groups, porosity,                   & or metal oxides       &  \\
                & surface area, pore size, metal ligands            & High permeate purity, &  \\
                & and electrostatic interactions.                   & possibly with extra steps&  \\
\bottomrule
\end{tabular}
\end{longtable}
\end{landscape}
\end{document}

答案1

您的表格中有很多问题可以一步解决,而且您的文档示例不完整,因此无法编译。

第一个题外评论:

  • 它包含化学公式。为什么不使用包,而是mchem写例子\ce{CO2}CO\textsubscript{2}
  • siunitx强烈建议所有单位使用该包。\SIrange{15}{30}{\celsius}例如15 -- 30 \textdegree C
  • 似乎您在行之间拆分文本而不是使用多行单元格(例如p{...}X如果您使用包tabularxltablex)收集文本,即您的表格实际上只有两行...

主题:

  • 我尝试重写你的表格,但是我迷失在你的文本中。所以我把单元格中的正确文本留给了你
  • 您可以定义的列longtable

举个例子,如何重写你的表格(当然单元格中的内容是正确的):

\documentclass{article}
\usepackage{booktabs, longtable}
\usepackage{siunitx}
\usepackage[version=3]{mhchem}
\usepackage{pdflscape}

\begin{document}
\begin{landscape}
\begin{longtable}{|p{0.19\linewidth} *{3}{p{0.27\linewidth}|} }
\caption{Post-combustion CCS technologies}
\label{tab:CCS}  \\
\toprule
Technology & Principle & Advantages & Disadvantages  \\
\toprule
Absorption or (chemical) scrubbing
    & \ce{CO2} is contacted with a solvent in a packed column, counter flow over other compounds in flue gas
        & Commercially available
            & High CAPEX, OPEX, efficiency losses due to energy demand for regeneration \\
    &   & Assumed to be mature
            & \\
    & Solvent sorbs more soluble \ce{CO2}
        & Know-how from industry e.g. acid gas removal,
            & Transferable to power plants?\\
    &
        &
            & Accumulation of trace compounds \\
    & Purer \ce{CO2} released in regeneration
        & \ce{CO2} removal in IGCC
            & Foaming: reduces absorption efficiency \\
    & Solvent: amines, alkaline earth
        & Low consumables demand & Environmental impact of solvents: \\
            & solutions, glycol, ammonia, water
                & Solvent regeneration   & (eco)toxicity and corrosion\\
    %Add half midrule?
    & Upcoming: aqueous ammonia
        & High \ce{CO2} capacity & Volatile \\
    &
        & Lower heat demand, lower OPEX & Cooling of flue gas to \SIrange{15}{30}{\celsius} needed \\
    &
        & Small make-up demand:
            & to minimise solvent emission\\
    &
        & tolerance to \ce{O2}
            & \\
    &
        & Potential for simultaneous SO\textsubscript{x}, \ce{NOx} removal by forming ammonia sulphate and nitrate (can be sold as fertilisers)
            & \\
    & Ionic liquids: salt of
        & Stable up \SI{100}{\celsius}:
            & Very expensive chemicals (new)\\
    & organic cation + (in)organic anion
        & no cooling of flue gas needed (physical sorption)
            & High viscosity: unpractical \\
    &
        & Small energy demand for regeneration
            & \\
    & Physical solvent for \ce{CO2}
        &
            & \\
    & Solubility depends on anion
        & Simultaneous SO\textsubscript{x} removal
            & \\
\midrule
Adsorption
    & \ce{CO2} is contacted with a adsorbent in a bed reactor
        & Simple concept, low CAPEX
            & Purifying steps complicate process

              Rather impure by-product
              Not for too strongly binding species \\
    & Preferential adsorption of \ce{CO2}
        & Regeneration by temperature and pressure swing adsorption and \ce{CO2}.
            & \\
    & Physisorption: Van der Waals forces between surface of adsorbent e.g. clays, zeolites, activated carbon, carbon nanotubes, metal-organic frameworks (MOFs)
        &
            &  \\
    &
        & (TSA, PSA) %\nomenclature{TSA}{Temperature swing adsorption} \nomenclature{PSA}{Pressure swing adsorption}
                at lower cost and energy absorption, low OPEX demand than for
            &  \\
    & Chemisorption: interaction between functional groups of the adsorbate and \ce{CO2} to form weak bonds.
        &
            &  \\
    &
        & Tunable affinity of
            &   \\
    &
        & organics: addition of functional groups on functional groups, porosity, surface area, pore size, metal ligands and electrostatic interactions.
            &   \\
    & \ce{CO2} adsorption potential depends
        & e.g. nitrogenous groups or metal oxides
            &   \\
    &
        & High permeate purity, possibly with extra steps
            &  \\
\midrule
Cryogenic distillation & Preferred condensation of CO\textsubscript{2}  &  & Very low temperatures: \\
\cite{Creamer, CCSbook, Bauer2013} & over other gases (N\textsubscript{2}, CH\textsubscript{4})&  & high energy demand, \\
                   & based on differences in vapour pressures and volatilities &  & high OPEX, efficiency losses \\
                   & Outcoming CO\textsubscript{2} is liquid  &  & Prior H\textsubscript{2}O removal needed \\
                   & More used for air separation in oxyfuel combustion        &  & \\
                   & Share of 0.5\% in biogas upgrading market                 &  & \\
\midrule
Carbonate looping      & Dry sorption of CO\textsubscript{2} on metallic oxides in carbonater & High purity& Efficiency losses (7.2\%) \\
              & Desorption under temperature or pressure swing in calcinator & Endothermic: released heat usable in power plants & Lab scale  \\
              & Dual fluidised bed reactor & Smaller efficiency loss in regeneration compared to amine sorption &   \\
              & or fixed bed in one reactor& Assumed to be retrofittable &   \\
              & & &   \\
              & & &   \\
              & e.g. CaO, lithium silicates & &   \\
\midrule    
Enzyme-based systems & Based on natural CO\textsubscript{2} capture & Enhanced mass transfer and CO\textsubscript{2}: & \\
                 & by living organisms                          & less hindrance of aqueous CO2 hydratation rate and buffering capacity &   \\
                 & Enzymes, carbonic anhydrase                  & Smaller energy penalty: & Limited by membrane boundary layers, \\
                 & immobilised on gas/liquid interphase         & very low heat of absorption, &pore wetting, surface fouling \\
                 & of hollow fiber liquid membrane:             & regeneration at ambient conditions & and loss of enzyme activity  \\
                 & imitating mammal respiration                 & Limited amount of enzyme needed, & Lab scale: long-term \\
                 & Enzyme increases carbonic                    & small make-up demand: & operation tests and scaling up needed\\
                 & acid formation rate                          & due to the fast turn-over rate&   \\
                 & of water scrubbing                           & &   \\
\bottomrule
\end{longtable}
\end{landscape}

在此处输入图片描述

附录(已编辑): 如果你想\onehalfspace在正文和表格中使用间距,例如 1.1 间距,那么在序言中添加

\usepackage{setspace}
\onehalfspace

并在\begin{landscape}添加后\setstretch{1.1}。两者现在都被视为姆韦以下。

\documentclass[a4paper]{article}
\usepackage{geometry}
\usepackage[utf8]{inputenc}
\usepackage{ragged2e}
\usepackage{booktabs, ltablex}
\keepXColumns
\usepackage[version=4]{mhchem}
\usepackage{siunitx}

\usepackage{enumitem}        % for nice list
\newlist{tabitem}{itemize}{1}% <-- defined new list
\setlist[tabitem]{nosep,     % <-- new list setup
                     topsep     = 0pt       ,
                     partopsep  = 0pt       ,
                     leftmargin = *         ,
                     label      = $\bullet$ ,
                     before     = \vspace{\baselineskip},
                     after      = \vspace{-\baselineskip}
                     }
\usepackage{pdflscape}

\usepackage{setspace}   % added in edit
\onehalfspace           % added in edit
\usepackage{lipsum}     % added in edit

\begin{document}
\lipsum[1-3]            % added in edit
\begin{landscape}
\setstretch{1.1}        % added in edit
\begin{tabularx}{\linewidth}{@{}
            >{\raggedright\arraybackslash}p{15ex}
            X X X @{}}
\caption{Post-combustion CCS technologies}
\label{tab:CCS}  \\
    \toprule
Technology & Principle & Advantages & Disadvantages  \\
    \midrule
\endfirsthead
\caption{Post-combustion CCS technologies (cont.)}
\label{tab:CCS}  \\
    \toprule
Technology & Principle & Advantages & Disadvantages  \\
    \midrule
\endhead
\multicolumn{4}{r}{\footnotesize\emph{continued on the next page}}
\endfoot
    \bottomrule
\endlastfoot
Absorption or (chemical) scrubbing
    &   \begin{tabitem}
        \item   \ce{CO2} is contacted with a solvent in a packed column, counter flow over other compounds in flue gas
        \item   Solvent sorbs more soluble \ce{CO2}
        \item   Purer \ce{CO2} released in regeneration
        \item  Solvent: amines, alkaline earth solutions, glycol, ammonia, water
        \end{tabitem}
        &   \begin{tabitem}
            \item   Commercially available
            \item   Assumed to be mature
            \item   Know-how from industry e.g. acid gas removal
            \item   \ce{CO2} removal in IGCC
            \item   Low consumables demand
            \item   Solvent regeneration
            \end{tabitem}
            &   \begin{tabitem}
                \item   High CAPEX, OPEX, efficiency losses due to energy demand for regeneration
                \item   Transferable to power plants?
                \item   Accumulation of trace compounds
                \item   Foaming: reduces absorption efficiency
                \item   Environmental impact of solvents: (eco)toxicity and corrosion
                \end{tabitem}                           \\
    \addlinespace
    &   Upcoming: aqueous ammonia
        &   \begin{tabitem}
            \item   High \ce{CO2} capacity
            \item   Lower heat demand, lower OPEX
            \item   Small make-up demand: tolerance to \ce{O2}
            \item   Potential for simultaneous SO\textsubscript{x}, \ce{NOx} removal by forming ammonia sulphate and nitrate (can be sold as fertilisers)
            \end{tabitem}
            &   \begin{tabitem}
                \item   Volatile
                \item   Cooling of flue gas to \SIrange{15}{30}{\celsius} needed to minimise solvent emission
                \end{tabitem}                           \\
    \addlinespace
    &   Ionic liquids: salt of organic cation + (in)organic anion
        \bigskip
        &   \begin{tabitem}
            \item   Stable up \SI{100}{\celsius}: no cooling of flue gas needed (physical sorption)
            \item   Small energy demand for regeneration
            \end{tabitem}
            &   \begin{tabitem}
                \item   Very expensive chemicals (new)
                \item   High viscosity: unpractical
                \end{tabitem}                           \\
    \addlinespace
    &   Physical solvent for \ce{CO2}
        \bigskip
        \begin{tabitem}
        \item   Solubility depends on anion
        \end{tabitem}
           &   \begin{tabitem}
                \item   Simultaneous SO\textsubscript{x} removal
                \end{tabitem}                           \\
\midrule
Adsorption
    &   \begin{tabitem}
        \item   \ce{CO2} is contacted with a adsorbent in a bed reactor
        \item   Preferential adsorption of \ce{CO2}
        \item   Physisorption: Van der Waals forces between surface of adsorbent e.g. clays, zeolites, activated carbon, carbon nanotubes, metal-organic frameworks (MOFs)
        \item   Chemisorption: interaction between functional groups of the adsorbate and \ce{CO2} to form weak bonds.
        \item   \ce{CO2} adsorption potential depends
        \end{tabitem}
        &   \begin{tabitem}
            \item   Simple concept, low CAPEX
            \item   Regeneration by temperature and pressure swing adsorption and \ce{CO2}.
            \item   (TSA, PSA) %\nomenclature{TSA}{Temperature swing adsorption} \nomenclature{PSA}{Pressure swing adsorption}
                at lower cost and energy absorption, low OPEX demand than for ?
            \item   Tunable affinity of organics: addition of functional groups on functional groups, porosity, surface area, pore size, metal ligands and electrostatic interactions.
            \item   e.g. nitrogenous groups or metal oxides
            \item   High permeate purity, possibly with extra steps
            \end{tabitem}
           &   \begin{tabitem}
                \item   Purifying steps complicate process
                \item   Rather impure by-product
                \item   Not for too strongly binding species
                \end{tabitem}                           \\
    \midrule
Cryogenic distillation
\cite{Creamer, CCSbook, Bauer2013}
    &   \begin{tabitem}
        \item   Preferred condensation of \ce{CO2} over other gases (\ce{N2}, \ce{CH4}) based on differences in vapour pressures and volatilities
        \item   Outcoming \ce{CO2} is liquid
        \item   More used for air separation in oxyfuel combustion
        \item   Share of \SI{0.5}{\%} in biogas upgrading market
        \end{tabitem}
        &   &   \begin{tabitem}
                \item   Very low temperatures
                \item   high energy demand
                \item   high OPEX, efficiency losses
                \item   Prior \ce{H2O} removal needed
                \end{tabitem}   \\
    \midrule
Carbonate looping
    &   \begin{tabitem}
        \item   Dry sorption of \ce{CO2} on metallic oxides in carbonater
        \item   Desorption under temperature or pressure swing in calcinator
        \item   Dual fluidised bed reactor or fixed bed in one reactor e.g. \ce{CaO}, lithium silicates
        \end{tabitem}
        &   \begin{tabitem}
            \item   High purity
            \item   Endothermic: released heat usable in power plants
            \item   Smaller efficiency loss in regeneration compared to amine sorption
            \item   Assumed to be retrofittable
            \end{tabitem}
            &   \begin{tabitem}
                \item   Efficiency losses (\SI{7.2}{\%})
                \item   Lab scale
                \end{tabitem}                               \\
    \midrule
Enzyme-based systems
    &   \begin{tabitem}
        \item   Based on natural CO\textsubscript{2} capture by living organisms
        \item   Enzymes, carbonic anhydrase immobilised on gas/liquid interphase of hollow fiber liquid membrane: imitating mammal respiration
        \item   Enzyme increases carbonic acid formation rate of water scrubbing
        \end{tabitem}
        &   \begin{tabitem}
            \item   Enhanced mass transfer and CO\textsubscript{2}: less hindrance of aqueous CO2 hydratation rate and buffering capacity
            \item   Smaller energy penalty: very low heat of absorption regeneration at ambient conditions
            \item   Limited by membrane boundary layers, small make-up demand: due to the fast turn-over rate
            \end{tabitem}
            &   \begin{tabitem}
                \item   Limited amount of enzyme needed, pore wetting, surface fouling and loss of enzyme activity
                \item   Lab scale: long-term operation tests and scaling up needed
                \end{tabitem}                           \\
\end{tabularx}
\end{landscape}
\end{document}

在此处输入图片描述

(仅显示三页中的第一页,表格考虑了因编辑答案而引入的更改)

答案2

这里我用 Tabu 编写了一个代码,只是为了证明longtabu 在 pdfscape 环境中工作这是我想解决的问题之一;该示例实现了多个选项,用于修改禁忌文本、等待使用的页眉和表脚,以及一种在表中放置注释的即兴手动模式(蛮力),我认为有一个名为 threeparttable 的数据包,但我认为这与 longtable 环境不兼容...我不知道在线编译器是否有足够的能力来编译所有内容或者如果它有良好的错误处理,我会使用特克斯工作室微特克斯以及 Arara 自动化,它实现了错误检测,对我制作兼容的代码和包有很大帮助。

% arara: pdflatex: {synctex: yes, action: nonstopmode}
\documentclass{article}
\usepackage[a4paper,bindingoffset=0.2in,%
left=1in,right=1in,top=1in,bottom=1in,%
footskip=.25in]{geometry} %set quickly page dimmensions

\usepackage{tabu} %for beauty tables
\usepackage{longtable} %needed for longtabu
\usepackage{tabularx} %
\usepackage{array}
\usepackage[longtable]{multirow}
\usepackage{booktabs}

\usepackage[usenames,dvipsnames]{xcolor} % Allows the definition of hex colors
\usepackage{colortbl} 
\usepackage{pdflscape} % to rotate page to prevent stiff neck...
\usepackage{siunitx} % To put easily SI units.
\usepackage[version=3]{mhchem}
\usepackage{lipsum} % To put some dummy text.
\definecolor{tabu}{HTML}{002fa7} %define colar named tabu in HTML
\newcommand{\cmt}[1]{\textsuperscript{#1}}% \superscript is too long ro rewrite many times

\begin{document}    
\lipsum[1-4]    
    \begin{landscape}
        \begin{small}
            \tabulinesep = 2mm
            \tabulinestyle{1pt tabu}
            \begin{longtabu} to \linewidth {X[.7l]X[2]X[2]X[2]} %X[ab]: X-type of column,a-widht factor,b-align.  
                % Define the end foot.
                %\tabucline -  uncoment if you do manually references. 
                \multicolumn{4}{l}{\sc\scriptsize\color{tabu}Continues in the next page\ldots}\\ \endfoot
                %define the end last foot.
                \endlastfoot % its necesary if you need 
                %define the header
                \caption{Post-combustion CCS technologies} \label{tab:CCS}   \\
                \tabucline -
                \rowfont[c]{\bf \color{blue}} % To formating all the row elements.
                Technology & Principle & Advantages & Disadvantages  \\ \tabucline - \endhead
                %table body.
                    \bf Absorption or (chermical) scrubing %File 1 column 1 bold
                    & \ce{CO2} is contacted with a solvent  in a packed column, counter flow Solvent sorbs more soluble \ce{CO2} Solvent sorbs more soluble \ce{CO2} over other compounds in flue gas Purer \ce{CO2} released in regeneration Solvent: amines, alkaline earth solutions, glycol, ammonia, water     %File 1 column 2
                    & Commercially available Assumed to be mature Know-how from industry e.g. acid gas removal, \ce{CO2} removal in IGCC Low consumables demand Solvent regeneration (TSA\cmt{1}, PSA\cmt{2}) %File 1 column 3
                    & High CAPEX, OPEX, efficiency losses due to energy demand for regeneration Transferable to power plants? Accumulation of trace compounds Foaming: reduces absorption efficiency Environmental impact of solvents: (eco)toxicity and corrosion \\ %End File 1 column 4 
                    Lost in chemistry %File 2 column 1
                    & \bf \lipsum[5] %File 2 column 2 text bold.
                    & \cellcolor{blue} \color{white} \vspace{-.5\baselineskip} \sf \lipsum[4] %File 2 column 3
                    & \vspace{-.5\baselineskip}\color{blue} \lipsum[3] \\ \tabucline -%End File 2 column 4, text colo blue with correction in vertical space.
                    %Manually reference: by brute force.
                    \multicolumn{4}{p{15cm}}{\scriptsize  %multicolumn whit paragraph mode its mandatory toindicate the width.
                        1\, {\bf TSA}:\,Temperature swing adsorption. \par
                        2\, {\bf PSA}:\,Pressure swing adsorption.
                    }\\ 
                    I'm still lost. %File 3 column 1
                    & \lipsum[1] %File 3 column 2
                    &  \vspace{-\baselineskip} % to correct the default spacing from itemize environment.
                        \begin{itemize}
                        \item High CAPEX\cmt{3} /, OPEX\cmt{4}, efficiency losses due to energy
                        \item \ce{CO2} is contacted with a solvent  in a packed column, counter flow Solvent sorbs more soluble \ce{CO2} .
                        \item Commercially available Assumed to be mature. 
                        \end{itemize} %File 3 column 3 witth environment itemize.
                    & \lipsum[7] \\ \tabucline - %End File 3 column 4
                    %Manually reference: by brute force 2.
                    \multicolumn{4}{p{15cm}}{\scriptsize  %multicolumn whit paragraph mode its mandatory toindicate the width.
                        3\, {\bf CAPEX}:\,Something that I dont know \par %\, is an spacing command
                        4\, {\bf OPEX}:\, Maybe something related.
                    }\\ 

            \end{longtabu}
        \end{small}
    \end{landscape}
\end{document}

这是结果。(修改了纸张尺寸,使图像紧凑且具有必要的分辨率,以便可以看到细节)

在此处输入图片描述

相关内容