我的教授的讲稿
当我使用时amsthm
,默认行为是
最小工作示例如下:
\documentclass{article}
\usepackage{amsmath,amsthm}
\newtheorem{example}{Example}[section] % parent counter setting
\newtheorem{definition}{Definition}[section]
\begin{document}
\section{Topological space: concepts and examples}
\setcounter{definition}{-1}
\begin{definition}
Let $X$ be a non-empty set. The power set of $X$, denoted as $2^{X}$ is $\{Y|Y\subseteq X\}$
\end{definition}
\setcounter{example}{-1}
\begin{example}
$X=\{1,2\},2^X=\{\{1\},\{2\},\{1,2\},\emptyset\}$
\end{example}
\begin{example}[Euclidean topology]
Let
\end{example}
\setcounter{example}{3}
\begin{example}
Let
\end{example}
\end{document}
答案1
您可以重新定义定理样式:
\documentclass{article}
\usepackage{amsmath,amsthm}
\newtheorem{example}{Example}[section] % parent counter setting
\newtheorem{definition}{Definition}[section]
\newtheoremstyle{plain}
{\topsep} % ABOVESPACE
{\topsep} % BELOWSPACE
{} % BODYFONT
{0pt} % INDENT (empty value is the same as 0pt)
{\bfseries} % HEADFONT
{} % HEADPUNCT
{5pt plus 1pt minus 1pt} % HEADSPACE
{} % CUSTOM-HEAD-SPEC
\begin{document}
\section{Topological space: concepts and examples}
\setcounter{definition}{-1}
\begin{definition}
Let $X$ be a non-empty set. The power set of $X$, denoted as $2^{X}$ is $\{Y|Y\subseteq X\}$
\end{definition}
\setcounter{example}{-1}
\begin{example}
$X=\{1,2\},2^X=\{\{1\},\{2\},\{1,2\},\emptyset\}$
\end{example}
\begin{example}[Euclidean topology]
Let
\end{example}
\setcounter{example}{3}
\begin{example}
Let
\end{example}
\end{document}