采用特定离散化方案的二维网格矩阵图

采用特定离散化方案的二维网格矩阵图

我有一个 2D 网格,当使用有限差分法 (5 点模板) 用二阶中心差分格式进行离散化时,将产生一个稀疏矩阵。有没有办法生成一个填充矩阵,显示网格点各个位置的条目。

(这个问题针对的是具有数学背景的人,特别是那些了解稀疏线性系统和离散化方案的人)

矩阵的示例图像:

在此处输入图片描述

注意:上图不是下面网格离散化后得到的矩阵结构,但我看到的是使用二阶中心差分格式对我的网格进行离散化后得到的类似上图的图像(有关详细信息,可以查看这一页

我的网格点的代码

\documentclass{article}
\usepackage{tikz}
\begin{document}
\begin{tikzpicture}
[darkstyle/.style={circle,draw,minimum size=25}]
 \foreach \x in {0,...,4}
    \foreach \y in {0,...,4} 
       {\pgfmathtruncatemacro{\label}{\x - 5 *  \y +21}
       \node [darkstyle]  (\x\y) at (2.5*\x,2.5*\y) {\label};} 

  \foreach \x in {0,...,4}
    \foreach \y [count=\yi] in {0,...,3}  
      \draw (\x\y)--(\x\yi) (\y\x)--(\yi\x) ;
\end{tikzpicture}
\end{document}
%resulting grid shown below

上述代码生成的网格

我想到的解决方案没有将网格链接到我的离散化方案并生成矩阵间隙(这似乎是一项有点复杂的任务,需要组装所谓的刚度矩阵,我对 TEX 的要求太高了 :P)尽管如此,我还是设法用一段非常糟糕的代码(我不喜欢)生成了我想要的图形。它在这里:

\begin{tikzpicture}
 %draws the outer box
 \draw (0.15,-0.05) rectangle (-3.8,3.9);

  \foreach \x in  {0,...,25}
    \foreach \y in  {0,...,25}
     \foreach \position in {(0.15*-\x,0.15*\y)}
      {\ifnum \x=\y
            { \draw[fill=black] \position rectangle +(0.1,0.1);}
        \fi}

\foreach \x in  {1,...,25}
    \foreach \y in  {1,...,25}
     \foreach \position in {(0.15 + 0.15*-\x,0.15*\y)}
      {\ifnum \x = \y
            {\draw[fill=black] \position rectangle +(0.1,0.1);}
        \fi}

\foreach \x in  {0,...,25}
    \foreach \y in  {0,...,24}
     \foreach \position in {( -0.15+0.15*-\x,0.15*\y)}
      {\ifnum \x = \y
            { \draw[fill=black] \position rectangle +(0.1,0.1);}
        \fi}

\foreach \x in  {5,...,25}
    \foreach \y in  {0,...,25}
     \foreach \position in {( 0.75+0.15*-\x,0.15*\y)}
      {\ifnum \x = \y
            {\draw[fill=black] \position rectangle +(0.1,0.1);}
        \fi}

\foreach \x in  {0,...,20}
    \foreach \y in  {0,...,25}
     \foreach \position in {( -0.75+0.15*-\x,0.15*\y)}
      {\ifnum \x = \y
            {\draw[fill=black] \position rectangle +(0.1,0.1);}
      \fi}
\end{tikzpicture}

矩阵的图形如下所示:

在此处输入图片描述

但如果有人能给我建议来清理代码,我会很高兴:)

答案1

好的,谢谢你的回答,现在我开始明白你想要什么了。这是一个稍微简单的代码。

\documentclass[tikz,border=7pt]{standalone}
\usetikzlibrary{plotmarks}
\begin{document}
\pgfsetplotmarksize{0.05cm}
\begin{tikzpicture}
 %draws the outer box
 \draw (0.15,-0.15) rectangle (-3.95,3.9);

  \foreach \x in  {0,...,25}
    {\foreach \y in  {0,...,25}
     {\pgfmathtruncatemacro{\Z}{ifthenelse(abs(\x-\y)<2,0,1)}
     \ifnum\Z=0
     \node at (-0.15*\x,0.15*\y) {\pgfuseplotmark{square*}};
     \else
     \pgfmathtruncatemacro{\Z}{ifthenelse(abs(\x-\y)==4,0,1)}
     \ifnum\Z=0
     \node at (-0.15*\x,0.15*\y) {\pgfuseplotmark{square*}};
     \fi
     \fi}
    }
\end{tikzpicture}
\end{document}

在此处输入图片描述

我还想知道您是否想要像问题中那样的块结构,如果是的话,请告诉我。(顺便说一句,我认为最好将答案移到问题上。)以防万一:

\documentclass[tikz,border=7pt]{standalone}
\usetikzlibrary{plotmarks,calc}
\begin{document}
\pgfsetplotmarksize{0.05cm}
\begin{tikzpicture}
 %draws the outer box
 \draw (0.15,-0.15) coordinate (br) rectangle (-3.95,3.9) coordinate (tl);

  \foreach \x in  {0,...,25}
    {\foreach \y in  {0,...,25}
     {\pgfmathtruncatemacro{\Z}{ifthenelse(abs(\x-\y)<2,0,1)}
     \ifnum\Z=0
     \node at (-0.15*\x,0.15*\y) {\pgfuseplotmark{square*}};
     \else
     \pgfmathtruncatemacro{\Z}{ifthenelse(abs(\x-\y)==4,0,1)}
     \ifnum\Z=0
     \node at (-0.15*\x,0.15*\y) {\pgfuseplotmark{square*}};
     \fi
     \fi}
    }
 \fill[white] ([xshift=1mm,yshift=1mm]br -| tl) rectangle ([xshift=0.2mm]$(br)!0.5!(tl)$);  
 \fill[white] ([xshift=-1mm,yshift=-1mm]br |- tl) rectangle ([xshift=0.2mm]$(br)!0.5!(tl)$);    
\end{tikzpicture}
\end{document}

在此处输入图片描述

答案2

在此处输入图片描述五年前我写了这个解决方案。抱歉结果不好,但我删除了输入行以保持在 30000 行以内

% !TEX program = LuaLaTeX

%\documentclass[a4paper]{report}
%\usepackage[margin=2cm]{geometry}

\documentclass{standalone}

\usepackage{tikz}
\usetikzlibrary{calc}

\def\LuaCalc#1{\directlua{tex.print(#1)}}

\def\pixels#1#2#3#4[#5]{
% #1 = pixel list
% #2 = X resolution
% #3 = Y resolution
% #4 = south west vertex
% #5 = grid key-values
\path[step=1,#5] (#4)grid(#2,#3);

\foreach \pixel in {#1}
{
\edef\column{\LuaCalc{math.ceil(\pixel/#3)}}

\ifnum\column>1
      \edef\row{\LuaCalc{#3-\pixel+(\column-1)*#3}}
\else
      \edef\row{\LuaCalc{#3-\pixel}}
\fi

\ifnum#2<\column
\edef\maxPix{\LuaCalc{#2*#3}}
\errmessage{Pixel value is \pixel. The maximum must be \maxPix}
\fi


\fill (\column-1,\row)rectangle++(1,1);
}
}



\begin{document}
\begin{tikzpicture}[x=.2mm,y=.2mm]
\pixels{72,78,93,94,98,99,%
120,121,122,136,137,138,%
139,141,143,185,272,273,%
277,278,279,294,295,298,%
309,320,322,337,338,341,%
342,343,385,473,474,475,%
476,477,494,495,496,497,%
498,499,509,510,511,512,%
518,519,520,522,536,537,%
538,539,542,543,585,586,%
587,657,658,672,673,677,%
689,694,695,696,709,711,%
719,720,722,736,742,747,%
748,749,750,751,773,774,%
775,785,827,829,858,870,%
873,889,890,891,893,894,%
895,908,909,911,912,941,%
942,951,952,953,974,975,%
985,1014,1015,1016,1017,1027,%
1028,1029,1030,1041,1058,1062,%
1063,1070,1071,1089,1091,1092,%
1093,1095,1112,1113,1142,1150,%
1151,1152,1174,1175,1176,1183,%
1184,1185,1214,1227,1228,1230,%
1241,1254,1255,1256,1257,1258,%
1259,1262,1265,1266,1270,1271,%
1285,1286,1287,1288,1289,1295,%
1313,1342,1360,1372,1373,1374,%
1376,1384,1385,1386,1387,1413,%
1414,1415,1416,1427,1428,1429,%
1430,1439,1440,1441,1442,1455,%
1456,1462,1464,1465,1466,1468,%
1471,1472,1473,1485,1486,1494,%
1495,1497,1498,1499,1500,1501,%
1512,1513,1518,1560,1574,1575,%
1576,1585,1614,1615,1616,1630,%
1631,1632,1639,1640,1641,1642,%
1656,1662,1663,1664,1666,1667,%
1668,1672,1673,1686,1687,1693,%
1694,1695,1701,1718,1719,1722,%
1723,1760,1775,1776,1830,1841,%
1842,1844,1845,1846,1847,1858,%
1859,1860,1861,1862,1868,1871,%
1872,1878,1886,1898,1899,1900,%
1901,1917,1918,1919,1920,1921,%
1922,1959,1960,1976,2005,2006,%
2012,2029,2030,2045,2046,2047,%
2048,2049,2061,2068,2069,2070,%
2071,2078,2086,2089,2091,2099,%
2159,2206,2207,2209,2210,2211,%
2212,2215,2229,2247,2248,2249,%
2261,2262,2266,2267,2268,2270,%
2271,2274,2275,2276,2277,2278,%
2285,2286,2289,2291,2292,2353,%
2358,2359,2406,2407,2408,2409,%
2410,2411,2412,2414,2415,2416,%
2429,2447,2461,2462,2465,2466,%
2475,2476,2478,2479,2480,2481,%
2485,2486,2487,2489,2491,2492,%
2518,2519,2521,2522,2553,2554,%
2555,2556,2557,2558,2559,2560,%
2561,2595,2606,2607,2608,2612,%
2613,2614,2615,2616,2629,2630,%
2660,2661,2664,2665,2666,2667,%
2673,2674,2675,2676,2680,2685,%
2686,2687,2689,2690,2691,2715,%
2716,2717,2718,2719,2720,2721,%
2751,2752,2753,2754,2755,2756,%
2757,2793,2794,2795,2813,2814,%
2815,2816,2829,2859,2860,2861,%
2865,2866,2867,2873,2875,2876,%
2880,2889,2893,2917,2919,2920,%
2936,2957,2958,2959,2961,2962,%
2995,3014,3015,3016,3017,3029,%
3060,3065,3072,3073,3074,3075,%
3076,3080,3081,3093,3094,3095,%
3117,3118,3119,3136,3137,3158,%
3159,3160,3161,3168,3169,3172,%
3195,3196,3197,3204,3205,3260,%
3268,3269,3270,3273,3274,3275,%
3292,3293,3294,3295,3314,3316,%
3317,3318,3319,3337,3354,3355,%
3358,3361,3368,3369,3370,3371,%
3372,3377,3386,3387,3388,3389,%
3396,3397,3404,3451,3453,3454,%
3455,3469,3473,3493,3494,3495,%
3496,3497,3498,3499,3513,3514,%
3519,3520,3537,3538,3539,3554,%
3555,3558,3571,3572,3577,3589,%
3596,3597,3598,3599,3600,3601,%
3602,3603,3604,3631,3632,3633,%
3634,3635,3636,3651,3654,3655,%
3668,3669,3670,3671,3695,3697,%
3713,3714,3717,3719,3720,3721,%
3737,3739,3740,3741,3752,3753,%
3754,3758,3759,3760,3763,3764,%
3777,3781,3782,3783,3784,3789,%
3795,3796,3798,3799,3801,3832,%
3833,3850,3851,3854,3855,3871,%
3897,3913,3916,3917,3918,3919,%
3940,3941,3952,3954,3958,3964,%
3975,3976,3977,3981,3982,3983,%
3984,3985,3986,3988,3989,3995,%
3996,3998,3999,4000,4001,4033,%
4034,4050,4051,4054,4055,4070,%
4071,4097,4113,4118,4119,4123,%
4139,4140,4141,4152,4154,4158,%
4159,4160,4161,4163,4164,4177,%
4184,4188,4189,4196,4197,4198,%
4201,4241,4250,4251,4253,4254,%
4259,4261,4262,4294,4295,4297,%
4302,4312,4313,4314,4322,4323,%
4325,4339,4340,4341,4344,4354,%
4361,4363,4364,4365,4377,4378,%
4379,4383,4384,4388,4389,4401,%
4425,4435,4436,4437,4438,4439,%
4441,4450,4451,4454,4459,4460,%
4461,4462,4463,4478,4494,4497,%
4498,4499,4502,4503,4504,4522,%
4525,4539,4540,4544,4545,4560,%
4561,4564,4565,4601,4602,4625,%
4635,4637,4638,4639,4641,4650,%
4663,4673,4675,4676,4677,4678,%
4679,4693,4694,4699,4702,4703,%
4722,4723,4724,4725,4726,4738,%
4739,4740,4741,4744,4755,4756,%
4822,4825,4837,4838,4839,4840,%
4841,4849,4850,4851,4862,4863,%
4873,4874,4875,4876,4877,4878,%
4879,4893,4894,4895,4902,4922,%
4924,4925,4926,4929,4936,4937,%
4938,4941,4942,4944,4954,4955,%
4956,4985,4986,5022,5023,5024,%
5025,5041,5093,5095,5101,5102,%
5103,5126,5127,5128,5129,5130,%
5131,5138,5139,5142,5143,5144,%
5147,5149,5151,5152,5153,5154,%
5181,5185,5222,5223,5225,5238,%
5267,5268,5269,5293,5303,5326,%
5328,5329,5339,5341,5342,5344,%
5345,5346,5347,5348,5349,5350,%
5351,5353,5354,5381,5382,5385,%
5394,5395,5438,5467,5469,5470,%
5529,5535,5536,5542,5547,5554,%
5581,5582,5585,5586,5587,5593,%
5594,5595,5596,5597,5598,5619,%
5622,5638,5653,5654,5655,5656,%
5667,5670,5676,5677,5679,5701,%
5706,5735,5741,5742,5747,5780,%
5781,5782,5784,5785,5786,5793,%
5794,5798,5799,5800,5818,5819,%
5820,5821,5822,5823,5824,5838,%
5839,5840,5856,5857,5870,5872,%
5874,5875,5876,5877,5878,5879,%
5901,5903,5906,5932,5933,5935,%
5936,5947,5982,5986,5988,5999,%
6015,6016,6017,6018,6023,6024,%
6038,6039,6040,6054,6055,6056,%
6057,6069,6070,6071,6072,6075,%
6076,6078,6079,6101,6102,6103,%
6104,6105,6106,6129,6133,6134,%
6135,6136,6146,6147,6182,6183,%
6186,6188,6216,6240,6241,6255,%
6271,6272,6275,6276,6295,6329,%
6330,6333,6334,6335,6386,6388,%
6415,6416,6417,6471,6472,6476,%
6477,6492,6493,6494,6495,6529,%
6530,6534,6585,6586,6587,6588,%
6589,6613,6614,6615,6617,6667,%
6668,6669,6670,6671,6672,6685,%
6686,6692,6695,6729,6730,6782,%
6786,6787,6788,6811,6812,6813,%
6817,6867,6868,6869,6871,6886,%
6892,6893,6894,6895,6928,6929,%
6939,6980,6981,6982,6983,6985,%
6986,7009,7010,7011,7013,7061,%
7062,7066,7067,7068,7069,7078,%
7079,7086,7095,7096,7128,7139,%
7140,7141,7179,7180,7185,7196,%
7197,7210,7211,7212,7213,7214,%
7215,7261,7279,7286,7289,7291,%
7294,7295,7296,7328,7330,7331,%
7337,7340,7380,7383,7384,7385,%
7386,7387,7396,7415,7416,7433,%
7434,7435,7460,7461,7479,7486,%
7487,7488,7489,7490,7491,7495,%
7496,7525,7526,7527,7528,7529,%
7530,7531,7537,7540,7541,7580,%
7581,7585,7587,7596,7597,7615,%
7616,7617,7618,7631,7632,7633,%
7634,7646,7647,7648,7649,7660,%
7661,7666,7668,7674,7675,7676,%
7677,7678,7679,7680,7681,7686,%
7691,7692,7694,7695,7720,7725,%
7730,7731,7737,7740,7781,7784,%
7785,7787,7797,7815,7816,7818,%
7831,7846,7848,7849,7850,7851,%
7861,7862,7864,7865,7866,7867,%
7868,7876,7877,7878,7879,7881,%
7882,7891,7892,7918,7919,7920,%
7921,7925,7926,7930,7937,7938,%
7939,7940,7984,7985,7987,7997,%
8015,8029,8031,8050,8061,8064,%
8065,8066,8067,8075,8076,8077,%
8081,8091,8092,8093,8118,8121,%
8125,8126,8128,8129,8130,8131,%
8132,8138,8139,8173,8174,8181,%
8182,8183,8184,8197,8198,8215,%
8216,8225,8226,8227,8228,8229,%
8230,8231,8232,8233,8236,8261,%
8267,8281,8288,8291,8318,8326,%
8327,8328,8329,8331,8337,8338,%
8339,8372,8373,8374,8381,8383,%
8397,8405,8406,8425,8427,8428,%
8430,8431,8432,8433,8434,8435,%
8436,8437,8438,8439,8460,8461,%
8462,8465,8466,8467,8476,8477,%
8478,8479,8480,8481,8488,8489,%
8516,8517,8518,8527,8537,8538,%
8539,8547,8548,8549,8572,8573,%
8581,8583,8601,8602,8603,8604,%
8605,8632,8633,8635,8660,8661,%
8662,8667,8688,8716,8717,8727,%
8733,8734,8738,8739,8740,8747,%
8772,8773,8774,8801,8805,8808,%
8809,8810,8832,8835,8860,8862,%
8867,8888,8889,8890,8891,8892,%
8893,8894,8917,8925,8926,8927,%
8928,8934,8935,8936,8937,8938,%
8939,8940,8947,8948,8949,8950,%
8971,8972,8974,8975,8979,8980,%
8981,8983,8984,9004,9005,9006,%
9009,9010,9031,9032,9035,9036,%
9037,9038,9062,9067,9089,9092,%
9094,9125,9127,9128,9134,9136,%
9139,9140,9141,9147,9148,9149,%
9150,9155,9180,9184,9185,9204,%
9205,9206,9208,9209,9210,9219,%
9232,9233,9234,9235,9236,9253,%
9254,9255,9262,9267,9268,9294,%
9295,9319,9325,9326,9327,9328,%
9329,9334,9336,9337,9338,9339,%
9340,9347,9355,9366,9368,9376,%
9377,9379,9380,9382,9383,9384,%
9385,9410,9417,9418,9419,9432,%
9452,9453,9455,9456,9457,9458,%
9462,9467,9494,9519,9520,9522,%
9527,9528,9529,9537,9539,9547,%
9555,9566,9567,9568,9576,9577,%
9578,9579,9582,9585,9609,9610,%
9611,9617,9618,9630,9631,9632,%
9635,9636,9637,9638,9644,9645,%
9648,9657,9662,9667,9668,9669,%
9693,9694,9703,9705,9719,9722,%
9723,9725,9726,9727,9729,9737,%
9747,9748,9753,9754,9755,9766,%
9768,9782,9783,9785,9807,9809,%
9817,9818,9819,9831,9832,9838,%
9843,9844,9845,9848,9857,9859,%
9860,9861,9862,9871,9893,9903,%
9904,9905,9912,9916,9917,9918,%
9919,9920,9921,9922,9923,9924,%
9925,9926,9927,9948,9951,9952,%
9953,9968,9982,9983,9984,9985,%
9995,9996,10005,10006,10007,10019,%
10031,10032,10038,10039,10045,10046,%
10047,10048,10051,10059,10061,10071,%
10072,10080,10081,10082,10084,10087,%
10105,10106,10107,10112,10118,10119,%
10120,10124,10127,10129,10147,10148,%
10149,10152,10153,10154,10156,10167,%
10168,10182,10192,10193,10194,10195,%
10196,10197,10201,10202,10203,10204,%
10205,10207,10217,10218,10219,10225,%
10239,10245,10248,10251,10254,10261,%
10262,10271,10272,10280,10281,10282,%
10283,10284,10287,10292,10293,10305,%
10311,10312,10313,10314,10315,10318,%
10319,10327,10328,10329,10330,10331,%
10332,10352,10354,10355,10356,10357,%
10367,10368,10388,10393,10394,10396,%
10403,10404,10407,10417,10419,10424,%
10425,10426,10427,10428,10438,10439,%
10440,10448,10449,10450,10451,10452,%
10453,10454,10461,10470,10471,10472,%
10473,10479,10480,10481,10484,10487,%
10488,10492,10493,10494,10505,10511,%
10512,10514,10526,10527,10528,10530,%
10532,10552,10556,10557,10567,10568,%
10569,10570,10588,10589,10590,10591,%
10594,10596,10597,10606,10607,10608,%
10621,10622,10623,10624,10625,10626,%
10627,10632,10633,10634,10638,10651,%
10652,10653,10661,10668,10669,10670,%
10672,10673,10679,10683,10684,10687,%
10688,10689,10690,10691,10692,10693,%
10711,10712,10713,10714,10726,10727,%
10728,10730,10732,10750,10751,10752,%
10756,10767,10768,10769,10791,10806,%
10822,10823,10824,10825,10827,10832,%
10833,10834,10849,10850,10851,10860,%
10861,10873,10874,10875,10889,10891,%
10892,10893,10903,10904,10905,10914,%
10928,10950,10951,10952,10956,10966,%
10967,10968,10969,10986,10987,10991,%
10992,10996,10997,11006,11007,11009,%
11024,11027,11032,11034,11046,11074,%
11075,11077,11088,11089,11090,11091,%
11097,11098,11101,11102,11103,11104,%
11105,11127,11128,11154,11156,11160,%
11186,11187,11191,11192,11193,11196,%
11204,11205,11206,11207,11208,11209,%
11223,11224,11231,11232,11234,11246,%
11247,11248,11268,11274,11277,11290,%
11291,11297,11298,11302,11304,11305,%
11327,11332,11354,11355,11356,11357,%
11359,11360,11362,11363,11364,11369,%
11386,11387,11388,11391,11393,11394,%
11395,11396,11409,11429,11430,11431,%
11432,11444,11445,11446,11447,11448,%
11453,11465,11466,11467,11468,11469,%
11474,11475,11477,11496,11497,11498,%
11527,11532,11533,11534,11554,11555,%
11556,11557,11558,11559,11560,11561,%
11562,11563,11564,11569,11570,11572,%
11587,11588,11593,11594,11596,11608,%
11609,11610,11629,11631,11644,11648,%
11653,11658,11659,11663,11664,11665,%
11669,11674,11675,11676,11677,11690,%
11695,11696,11697,11698,11699,11723,%
11724,11725,11734,11754,11755,11756,%
11757,11761,11764,11765,11769,11772,%
11773,11774,11775,11776,11777,11778,%
11779,11780,11787,11788,11796,11809,%
11829,11830,11831,11843,11844,11848,%
11852,11853,11858,11859,11863,11864,%
11865,11867,11868,11869,11874,11888,%
11889,11890,11891,11897,11925,11926,%
11927,11928,11931,11932,11933,11934,%
11935,11960,11961,11963,11964,11965,%
11966,11967,11968,11969,11977,11980,%
11988,11989,12028,12029,12033,12034,%
12035,12036,12037,12038,12039,12042,%
12043,12044,12045,12046,12048,12053,%
12058,12059,12067,12069,12070,12089,%
12091,12124,12125,12127,12131,12132,%
12158,12159,12160,12164,12165,12166,%
12167,12168,12169,12177,12188,12228,%
12229,12239,12242,12244,12245,12251,%
12252,12253,12257,12258,12259,12270,%
118890,118891,118892,118893,118906,118907,%
118908,118912,118930,118940,118941,118942,%
118944,118945,118947,118949,118972,118973,%
118986,118995,118996,119001,119002,119003,%
119013,119014,119018,119035,119036,119038,%
119064,119065,119066,119067,119070,119089,%
119090,119091,119093,119106,119107,119108,%
119109,119110,119111,119112,119130,119131,%
119136,119141,119144,119145,119149,119150,%
119172,119186,119187,119196,119198,119199,%
119202,119203,119204,119214,119233,119234,%
119235,119236,119237,119238,119240,119241,%
119242,119243,119244,119265,119270,119289,%
119310,119330,119331,119336,119337,119338,%
119341,119343,119344,119350,119387,119388,%
119389,119398,119399,119401,119402,119403,%
119404,119405,119414,119436,119437,119443,%
119444,119445,119467,119468,119469,119470,%
119471,119489,119493,119494,119495,119496,%
119497,119531,119536,119537,119538,119543,%
119555,119556,119589,119594,119595,119596,%
119597,119598,119599,119600,119604,119605,%
119614,119615,119616,119617,119637,119642,%
119643,119644,119645,119671,119672,119673,%
119674,119693,119696,119731,119736,119737,%
119740,119742,119743,119751,119752,119753,%
119754,119755,119756,119757,119787,119788,%
119789,119794,119795,119797,119803,119804,%
119814,119815,119836,119837,119839,119840,%
119841,119842,119844,119845,119871,119873,%
119893,119894,119896,119897,119931,119937,%
119940,119941,119942,119943,119955,119956,%
119957,119987,119989,119990,119991,119992,%
119994,119995,119997,119998,119999,120000%
}{600}{200}{0,0}[]

\end{tikzpicture}
\end{document}

相关内容