我有两个表:一个普通表和一个长表。在我的代码和引用中,普通表排在第一位,长表排在后面。但是,长表比表先出现。我该如何改变这种情况?
我希望普通桌子首先顺利出现,然后再出现长桌子。
可编译代码:https://codeshare.io/aVdxY8
\documentclass[12pt]{article}
%\usepackage[margin=20mm]{geometry}
\usepackage{ragged2e}
\usepackage{booktabs, makecell, tabularx}
\renewcommand\theadfont{\small\bfseries}
\renewcommand\theadgape{}
\newcolumntype{L}{>{\RaggedRight}X}
\usepackage{siunitx}
\usepackage{enumitem}
\usepackage{float}
%% To allow tables collumns auto newline
\usepackage{array}
\newcolumntype{L}[1]{>{\raggedright\let\newline\\\arraybackslash\hspace{0pt}}m{#1}}
\newcolumntype{C}[1]{>{\centering\let\newline\\\arraybackslash\hspace{0pt}}m{#1}}
\newcolumntype{R}[1]{>{\raggedleft\let\newline\\\arraybackslash\hspace{0pt}}m{#1}}
\usepackage{multirow, caption}
\usepackage{booktabs} % Beautiful simple tables
\usepackage{paralist} % To enable customizble enumerates
\usepackage{ragged2e}
\usepackage{hyperref}
\usepackage{booktabs,eqparbox,tabularx}
\usepackage{pdflscape}
\usepackage{afterpage}
\usepackage{capt-of}% or use the larger `caption` package
\usepackage{amsmath,calc}
\usepackage{bm}
\usepackage{cleveref}
%\usepackage[table,xcdraw]{xcolor}
\usepackage{longtable}
\begin{document}
\subsubsection{Linear variability}
Significant results obtained when testing the linear variability metrics are presented in Table \ref{table:linear_var_POAF_results}. Briefly, the variability in both time and morphological features were significantly different between POAF and controls far away from the arrhythmia (at least 18 hours away), while only variability in P-wave time features were significant as the arrhythmia onset got closer. The POAF group had higher median variability for all the presented timestamps, and showed increasing variability (slope) in all timestamps except 18 hours before the arrhythmia onset. In contrast, controls presented decreasing variability in the majority of variability regression slope results. The PQ interval (duration and level) was the only feature which had metrics significant after correction for multiple comparisons at 6 and 48 hours before the arrhythmia onset.
\begin{table}[!htp]
\caption[Significant results obtained when using linear variability metrics to predict postoperative atrial fibrillation.]{Significant results (uncorrected $p<0.01$) obtained when using the linear variability metrics. Results significant after correction for multiple corrections (corrected $p<0.05$) are shaded in grey. The median value (and the first/ third quartiles) of each group are presented.}
\label{table:linear_var_POAF_results}
\small
\centering
\renewcommand{\arraystretch}{1.3}
\resizebox{\textwidth}{!}{
\begin{tabular}{lcccc}
\hline
\textbf{Metrics} & \textbf{Controls} & \textbf{POAF} & \textbf{P-value} & \textbf{AUC} \\ \hline
\multicolumn{5}{c}{\textbf{1 hour before POAF} ($S=5$)} \\ \hline
\textbf{\textit{m}(PQ\textsubscript{on RRnorm})} \begin{footnotesize}[a.u.]\end{footnotesize} & 4.8$\times10^{-2}$ (4.0$\times10^{-2}$ / 5.7$\times10^{-2}$) & 5.8$\times10^{-2}$ (5.0$\times10^{-2}$ / 7.6$\times10^{-2}$) & 4.1$\times10^{-3}$ & 0.74 \\
\textbf{\textit{m}(PR\textsubscript{peak RRnorm})} \begin{footnotesize}[a.u.]\end{footnotesize} & 1.5$\times10^{-2}$ (1.2$\times10^{-2}$ / 2.2$\times10^{-2}$) & 2.2$\times10^{-2}$ (2.0$\times10^{-2}$ / 4.0$\times10^{-2}$) & 3.9$\times10^{-3}$ & 0.74 \\ \hline
\multicolumn{5}{c}{\textbf{2 hours before POAF} ($S=10$)} \\ \hline
\textbf{\textit{m}(P\textsubscript{dur. RRnorm})} \begin{footnotesize}[a.u.]\end{footnotesize} & 5.5$\times10^{-2}$ (4.6$\times10^{-2}$ / 6.5$\times10^{-2}$) & 7.2$\times10^{-2}$ (5.8$\times10^{-2}$ / 8.1$\times10^{-2}$) & 2.9$\times10^{-3}$ & 0.75 \\
\textbf{\textit{m}(PQ\textsubscript{on RRnorm})} \begin{footnotesize}[a.u.]\end{footnotesize} & 5.1$\times10^{-2}$ (4.3$\times10^{-2}$ / 6.1$\times10^{-2}$) & 7.6$\times10^{-2}$ (5.7$\times10^{-2}$ / 8.4$\times10^{-2}$) & 1.1$\times10^{-3}$ & 0.78 \\
\textbf{\textit{m}(PR\textsubscript{on RRnorm})} \begin{footnotesize}[a.u.]\end{footnotesize} & 4.0$\times10^{-2}$ (3.6$\times10^{-2}$ / 5.1$\times10^{-2}$) & 6.5$\times10^{-2}$ (4.8$\times10^{-2}$ / 7.3$\times10^{-2}$) & 4.1$\times10^{-3}$ & 0.75 \\
\textbf{\textit{m}(PR\textsubscript{peak RRnorm})} \begin{footnotesize}[a.u.]\end{footnotesize} & 1.7$\times10^{-2}$ (1.3$\times10^{-2}$ / 3.0$\times10^{-2}$) & 3.5$\times10^{-2}$ (2.2$\times10^{-2}$ / 4.6$\times10^{-2}$) & 3.9$\times10^{-3}$ & 0.75 \\ \hline
\multicolumn{5}{c}{\textbf{4 hours before POAF} ($S=10$)} \\ \hline
\textbf{\textit{m}(PR\textsubscript{peak RRnorm})} \begin{footnotesize}[a.u.]\end{footnotesize} & 1.7$\times10^{-2}$ (1.3$\times10^{-2}$ / 2.4$\times10^{-2}$) & 2.8$\times10^{-2}$ (1.9$\times10^{-2}$ / 4.1$\times10^{-2}$) & 8.2$\times10^{-3}$ & 0.73 \\ \hline
\multicolumn{5}{c}{\textbf{6 hours before POAF} ($S=10$)} \\ \hline
\textbf{\textit{m}(P\textsubscript{fin. dur.})} \begin{footnotesize}[ms]\end{footnotesize} & 24.0 (16.0 / 30.0) & 28.0 (24.0 / 37.0) & 5.7$\times10^{-3}$ & 0.73 \\
\textbf{\textit{m}(P\textsubscript{dur. RRnorm})} \begin{footnotesize}[a.u.]\end{footnotesize} & 5.9$\times10^{-2}$ (5.3$\times10^{-2}$ / 6.3$\times10^{-2}$) & 7.1$\times10^{-2}$ (6.1$\times10^{-2}$ / 9.2$\times10^{-2}$) & 2.2$\times10^{-3}$ & 0.76 \\
\textbf{\textit{m}(PQ\textsubscript{on})} \begin{footnotesize}[ms]\end{footnotesize} & 38.0 (32.0 / 44.0) & 44.0 (36.0 / 58.0) & 5.4$\times10^{-3}$ & 0.73 \\
\textbf{\textit{m}(PQ\textsubscript{on RRnorm})} \begin{footnotesize}[a.u.]\end{footnotesize} & 5.6$\times10^{-2}$ (4.4$\times10^{-2}$ / 6.2$\times10^{-2}$) & 7.9$\times10^{-2}$ (6.0$\times10^{-2}$ / 9.0$\times10^{-2}$) & 2.9$\times10^{-4}$ & 0.80 \\
\textbf{\textit{m}(PR\textsubscript{peak})} \begin{footnotesize}[ms]\end{footnotesize} & 8.0 (8.0 / 12.0) & 16.0 (11.0 / 21.0) & 1.6$\times10^{-3}$ & 0.75 \\
\textbf{\textit{m}(PR\textsubscript{on RRnorm})} \begin{footnotesize}[a.u.]\end{footnotesize} & 4.8$\times10^{-2}$ (3.7$\times10^{-2}$ / 5.4$\times10^{-2}$) & 6.9$\times10^{-2}$ (4.8$\times10^{-2}$ / 8.7$\times10^{-2}$) & 5.3$\times10^{-3}$ & 0.73 \\
\textbf{\textit{m}(PR\textsubscript{peak RRnorm})} \begin{footnotesize}[a.u.]\end{footnotesize} & 1.5$\times10^{-2}$ (1.3$\times10^{-2}$ / 2.5$\times10^{-2}$) & 3.3$\times10^{-2}$ (1.9$\times10^{-2}$ / 5.4$\times10^{-2}$) & 4.5$\times10^{-3}$ & 0.74 \\ \hline
\multicolumn{5}{c}{\textbf{12 hours before POAF} ($S=5$)} \\ \hline
\textbf{$\boldsymbol{\alpha}$(Q\textsubscript{on amp.})} \begin{footnotesize}[mV]\end{footnotesize} & -2.0$\times10^{-6}$ (-6.1$\times10^{-6}$ / -3.0$\times10^{-6}$) & 6.8$\times10^{-6}$ (-1.1$\times10^{-6}$ / 1.1$\times10^{-5}$) & 5.2$\times10^{-3}$ & 0.72 \\ \hline
\multicolumn{5}{c}{\textbf{18 hours before POAF} ($S=10$)} \\ \hline
\textbf{$\boldsymbol{\alpha}$(PQ\textsubscript{on})} \begin{footnotesize}[ms]\end{footnotesize} & 9.9$\times10^{-4}$ (-8.9$\times10^{-3}$ / 6.9$\times10^{-3}$) & -9.5$\times10^{-3}$ (-2.4$\times10^{-2}$ / -2.0$\times10^{-3}$) & 1.4$\times10^{-3}$ & 0.76 \\
\textbf{$\boldsymbol{\alpha}$(PQ\textsubscript{level, Pnorm})} \begin{footnotesize}[mV]\end{footnotesize} & 2.5$\times10^{-4}$ (-7.2$\times10^{-5}$ / 1.5$\times10^{-3}$) & -4.1$\times10^{-4}$ (-1.1$\times10^{-2}$ / 8.1$\times10^{-5}$) & 1.3$\times10^{-3}$ & 0.78 \\
\textbf{$\boldsymbol{\alpha}$(PR\textsubscript{on})} \begin{footnotesize}[ms]\end{footnotesize} & -1.7$\times10^{-4}$ (-8.5$\times10^{-3}$ / 7.0$\times10^{-3}$) & -7.1$\times10^{-3}$ (-2.8$\times10^{-2}$ / -1.7$\times10^{-3}$) & 4.8$\times10^{-3}$ & 0.73 \\
\textbf{$\boldsymbol{\alpha}$(PR\textsubscript{peak})} \begin{footnotesize}[ms]\end{footnotesize} & 2.5$\times10^{-4}$ (-3.5$\times10^{-3}$ / 4.4$\times10^{-3}$) & -5.5$\times10^{-3}$ (-1.5$\times10^{-2}$ / -1.7$\times10^{-4}$) & 8.1$\times10^{-3}$ & 0.71 \\ \hline
\multicolumn{5}{c}{\textbf{36 hours before POAF} ($S=30$)} \\ \hline
\textbf{$\boldsymbol{\alpha}$(P\textsubscript{min. vel.})} \begin{footnotesize}[mV]\end{footnotesize} & -7.7$\times10^{-7}$ (-5.7$\times10^{-6}$ / 9.5$\times10^{-6}$) & 1.9$\times10^{-5}$ (7.9$\times10^{-7}$ / 4.3$\times10^{-5}$) & 7.7$\times10^{-3}$ & 0.72 \\
\textbf{$\boldsymbol{\alpha}$(P\textsubscript{vel. disp.})} \begin{footnotesize}[mV]\end{footnotesize} & -1.1$\times10^{-6}$ (-1.1$\times10^{-5}$ / 1.6$\times10^{-5}$) & 2.7$\times10^{-5}$ (2.4$\times10^{-6}$ / 6.2$\times10^{-5}$) & 9.2$\times10^{-3}$ & 0.71 \\
\textbf{$\boldsymbol{\alpha}$(P\textsubscript{energy})} \begin{footnotesize}[$\mu V^2$]\end{footnotesize} & -7.1$\times10^{-10}$ (-6.3$\times10^{-9}$ / 7.4$\times10^{-9}$) & 1.1$\times10^{-8}$ (3.0$\times10^{-9}$ / 2.3$\times10^{-8}$) & 3.4$\times10^{-3}$ & 0.74 \\
\textbf{$\boldsymbol{\alpha}$(P\textsubscript{energy norm.})} \begin{footnotesize}[V/s]\end{footnotesize} & -1.1$\times10^{-10}$ (-6.9$\times10^{-10}$ / 4.7$\times10^{-10}$) & 1.1$\times10^{-9}$ (5.1$\times10^{-10}$ / 1.8$\times10^{-9}$) & 1.6$\times10^{-3}$ & 0.76 \\
\textbf{$\boldsymbol{\alpha}$(P\textsubscript{gauss. error})} \begin{footnotesize}[a.u.]\end{footnotesize} & -5.1$\times10^{-8}$ (-3.8$\times10^{-6}$ / 2.4$\times10^{-6}$) & 4.5$\times10^{-6}$ (-7.1$\times10^{-8}$ / 7.9$\times10^{-6}$) & 4.9$\times10^{-3}$ & 0.73 \\
\textbf{\textit{m}(P\textsubscript{fin. dur.})} \begin{footnotesize}[ms]\end{footnotesize} & 24.0 (16.0 / 28.0) & 32.0 (24.0 / 37.0) & 6.7$\times10^{-3}$ & 0.72 \\ \hline
\multicolumn{5}{c}{\textbf{42 hours before POAF} ($S=5$)} \\ \hline
\textbf{\textit{m}(P\textsubscript{fin. dur.})} \begin{footnotesize}[ms]\end{footnotesize} & 16.0 (16.0 / 24.0) & 24.0 (24.0 / 32.0) & 8.8$\times10^{-3}$ & 0.72 \\
\textbf{\textit{m}(PQ\textsubscript{off})} \begin{footnotesize}[ms]\end{footnotesize} & 24.0 (16.0 / 24.0) & 24.0 (24.0 / 32.0) & 1.0$\times10^{-2}$ & 0.72 \\
\textbf{\textit{m}(PQ\textsubscript{on RRnorm})} \begin{footnotesize}[a.u.]\end{footnotesize} & 4.1$\times10^{-2}$ (3.6$\times10^{-2}$ / 5.4$\times10^{-2}$) & 5.6$\times10^{-2}$ (4.4$\times10^{-2}$ / 6.9$\times10^{-2}$) & 6.9$\times10^{-3}$ & 0.74 \\
\textbf{\textit{m}(PQ\textsubscript{off RRnorm})} \begin{footnotesize}[a.u.]\end{footnotesize} & 3.1$\times10^{-2}$ (2.0$\times10^{-2}$ / 4.1$\times10^{-2}$) & 4.2$\times10^{-2}$ (3.3$\times10^{-2}$ / 5.2$\times10^{-2}$) & 4.8$\times10^{-3}$ & 0.75 \\
\textbf{\textit{m}(PR\textsubscript{off RRnorm})} \begin{footnotesize}[a.u.]\end{footnotesize} & 2.4$\times10^{-2}$ (1.4$\times10^{-2}$ / 3.5$\times10^{-2}$) & 3.5$\times10^{-2}$ (3.0$\times10^{-2}$ / 4.3$\times10^{-2}$) & 7.7$\times10^{-3}$ & 0.73 \\
\hline
\multicolumn{5}{c}{\textbf{48 hours before POAF} ($S=10$)} \\ \hline
\textbf{$\boldsymbol{\alpha}$(P\textsubscript{magn.})} \begin{footnotesize}[mV]\end{footnotesize} & -1.4$\times10^{-5}$ (-3.4$\times10^{-5}$ / -8.1$\times10^{-7}$) & 6.7$\times10^{-6}$ (-5.2$\times10^{-6}$ / 1.6$\times10^{-5}$) & 2.1$\times10^{-3}$ & 0.78 \\
\textbf{$\boldsymbol{\alpha}$(P\textsubscript{rms norm.})} \begin{footnotesize}[mV]\end{footnotesize} & -6.3$\times10^{-7}$ (-1.5$\times10^{-6}$ / -4.1$\times10^{-9}$) & 2.7$\times10^{-7}$ (7.8$\times10^{-8}$ / 6.4$\times10^{-7}$) & 9.3$\times10^{-3}$ & 0.73 \\
\textbf{$\boldsymbol{\alpha}$(P\textsubscript{energy})} \begin{footnotesize}[$\mu V^2$]\end{footnotesize} & -4.7$\times10^{-9}$ (-1.8$\times10^{-8}$ / 1.3$\times10^{-9}$) & 2.0$\times10^{-9}$ (1.5$\times10^{-10}$ / 9.2$\times10^{-9}$) & 7.0$\times10^{-3}$ & 0.74 \\
\textbf{$\boldsymbol{\alpha}$(P\textsubscript{energy norm.})} \begin{footnotesize}[V/s]\end{footnotesize} & -4.1$\times10^{-10}$ (-1.2$\times10^{-9}$ / 4.1$\times10^{-11}$) & 2.1$\times10^{-10}$ (9.6$\times10^{-12}$ / 1.6$\times10^{-9}$) & 3.9$\times10^{-3}$ & 0.76 \\
\textbf{$\boldsymbol{\alpha}$(PQ\textsubscript{level, Pnorm})} \begin{footnotesize}[mV]\end{footnotesize} & -3.7$\times10^{-3}$ (-7.0$\times10^{-2}$ / -6.6$\times10^{-4}$) & 3.0$\times10^{-5}$ (-2.1$\times10^{-4}$ / 1.8$\times10^{-3}$) & 7.4$\times10^{-4}$ & 0.86 \\
\textbf{\textit{m}(P\textsubscript{eucl. dist.})} \begin{footnotesize}[a.u.]\end{footnotesize} & 9.3$\times10^{-2}$ (7.3$\times10^{-2}$ / 1.2$\times10^{-1}$) & 1.4$\times10^{-1}$ (9.6$\times10^{-2}$ / 1.9$\times10^{-1}$) & 6.6$\times10^{-3}$ & 0.74 \\ \hline
\end{tabular}}
\end{table}
\subsubsection{Non-linear variability}
Non-linear CTM was found to significantly differ between POAF patients and controls in all the tested timestamps (Table \ref{table:CTM_results_POAF}). Controls were associated with higher CTM in the great majority of features and timestamps. However, CTM applied over the features P\textsubscript{vel. disp.}, P\textsubscript{fin. dur}, P\textsubscript{magn.}, PQ\textsubscript{level}, PQ\textsubscript{level Pnorm} and P\textsubscript{off amp.} was sometimes higher in POAF patients. Finally, several P-wave time- and morphological metrics were significant after correction for multiple comparisons 1, 12, 18, 42 and 48 hours before the arrhythmia onset, all of them showing higher CTM in controls.
\begin{small}
\begin{longtable}{llllll}
\caption[Significant results obtained when using non-linear variability metrics to predict postoperative atrial fibrillation.]{Significant results (uncorrected $p<0.01$) obtained when testing the non-linear variability results. The presented values of optimal $\rho$ correspond to the number of multiples of the standard deviation which minimised the \textit{p}-value for the correspondent feature. Results significant after correction for multiple corrections (corrected $p<0.05$) are shaded in grey. The median value (and the first/ third quartiles) of each group are presented (in arbitrary units).}
\label{table:CTM_results_POAF} \\
\hline \multicolumn{1}{c}{\textbf{Metrics}} & \multicolumn{1}{c}{$\boldsymbol{\rho}$} & \multicolumn{1}{c}{\textbf{Controls}} & \multicolumn{1}{c}{\textbf{POAF}} & \multicolumn{1}{c}{\textbf{P-values}} & \multicolumn{1}{c}{\textbf{AUC}} \\ \hline
\endfirsthead
\multicolumn{3}{c}%
{{\bfseries \tablename\ \thetable{} -- continued from previous page}} \\
\hline \multicolumn{1}{c}{\textbf{Metrics}} & \multicolumn{1}{c}{$\boldsymbol{\rho}$} & \multicolumn{1}{c}{\textbf{Controls}} & \multicolumn{1}{c}{\textbf{POAF}} & \multicolumn{1}{c}{\textbf{P-values}} & \multicolumn{1}{c}{\textbf{AUC}} \\ \hline
\endhead
\hline \multicolumn{6}{r}{{Continued on next page}} \\ \hline
\endfoot
\endlastfoot
\multicolumn{6}{c}{\textbf{1 hour before POAF} (lag$=5$)} \\ \hline
\textbf{PQ\textsubscript{off RRnorm}} & 3.0 & 0.8944 (0.8751 / 0.9085) & 0.9089 (0.8996 / 0.9367) & 2.7$\times10^{-3}$ & 0.75 \\
\textbf{PR\textsubscript{off RRnorm}} & 8.0 & 1.0000 (0.9994 / 1.0000) & 0.9994 (0.9979 / 1.0000) & 6.0$\times10^{-3}$ & 0.71 \\
\textbf{PR\textsubscript{on RRnorm}} & 4.0 & 0.9863 (0.9791 / 0.9931) & 0.9741 (0.9554 / 0.9814) & 3.1$\times10^{-4}$ & 0.80 \\
\textbf{PR\textsubscript{peak RRnorm}} & 3.5 & 0.9849 (0.9677 / 0.9942) & 0.9529 (0.9303 / 0.9735) & 5.4$\times10^{-4}$ & 0.79 \\
\textbf{P\textsubscript{area}} & 13.0 & 1.0000 (1.0000 / 1.0000) & 1.0000 (0.9999 / 1.0000) & 1.2$\times10^{-3}$ & 0.62 \\
\textbf{P\textsubscript{dur. RRnorm}} & 4.0 & 0.9822 (0.9758 / 0.9884) & 0.9714 (0.9637 / 0.9767) & 3.3$\times10^{-4}$ & 0.80 \\
\textbf{P\textsubscript{eucl. dist.}} & 4.0 & 0.9906 (0.9822 / 0.9930) & 0.9754 (0.9658 / 0.9834) & 3.1$\times10^{-5}$ & 0.85 \\
\textbf{P\textsubscript{gauss. A}} & 6.0 & 0.9981 (0.9958 / 0.9990) & 0.9947 (0.9907 / 0.9977) & 3.9$\times10^{-3}$ & 0.74 \\
\textbf{P\textsubscript{magn.}} & 4.0 & 0.9826 (0.9770 / 0.9896) & 0.9721 (0.9564 / 0.9816) & 9.2$\times10^{-4}$ & 0.78 \\
\textbf{P\textsubscript{area norm.}} & 4.0 & 0.9776 (0.9687 / 0.9843) & 0.9647 (0.9560 / 0.9724) & 4.8$\times10^{-4}$ & 0.79 \\
\textbf{P\textsubscript{rms norm.}} & 5.0 & 0.9912 (0.9855 / 0.9935) & 0.9842 (0.9787 / 0.9896) & 5.0$\times10^{-3}$ & 0.73 \\
\textbf{P\textsubscript{vel. disp.}} & 4.0 & 0.9821 (0.9781 / 0.9870) & 0.9764 (0.9726 / 0.9816) & 3.5$\times10^{-3}$ & 0.74 \\
\textbf{CCI} & 10.5 & 1.0000 (1.0000 / 1.0000) & 1.0000 (0.9993 / 1.0000) & 3.5$\times10^{-3}$ & 0.74 \\
\hline \multicolumn{6}{c}{\textbf{2 hours before POAF} (lag$=8$)} \\ \hline
\textbf{PQ\textsubscript{off}} & 8.5 & 1.0000 (1.0000 / 1.0000) & 1.0000 (0.9987 / 1.0000) & 2.8$\times10^{-3}$ & 0.67 \\
\textbf{PR\textsubscript{on}} & 11.0 & 1.0000 (1.0000 / 1.0000) & 1.0000 (0.9992 / 1.0000) & 5.2$\times10^{-3}$ & 0.65 \\
\textbf{PR\textsubscript{peak}} & 14.0 & 1.0000 (1.0000 / 1.0000) & 1.0000 (0.9991 / 1.0000) & 5.9$\times10^{-3}$ & 0.67 \\
\textbf{PQ\textsubscript{off RRnorm}} & 9.5 & 1.0000 (1.0000 / 1.0000) & 1.0000 (0.9991 / 1.0000) & 6.7$\times10^{-3}$ & 0.65 \\
\textbf{P\textsubscript{eucl. dist.}} & 4.5 & 0.9952 (0.9892 / 0.9968) & 0.9884 (0.9756 / 0.9942) & 2.8$\times10^{-3}$ & 0.76 \\
\textbf{P\textsubscript{gauss. C}} & 14.5 & 1.0000 (0.9992 / 1.0000) & 0.9991 (0.9986 / 0.9997) & 7.1$\times10^{-3}$ & 0.71 \\
\textbf{P\textsubscript{area norm.}} & 3.5 & 0.9593 (0.9466 / 0.9684) & 0.9372 (0.9327 / 0.9548) & 5.3$\times10^{-3}$ & 0.74 \\
\textbf{P\textsubscript{fin. dur.}} & 6.0 & 0.9994 (0.9981 / 1.0000) & 1.0000 (0.9998 / 1.0000) & 2.7$\times10^{-3}$ & 0.75 \\
\hline \multicolumn{6}{c}{\textbf{4 hours before POAF} (lag$=6$)} \\ \hline
\textbf{P\textsubscript{dur RRnorm}} & 6.0 & 0.9995 (0.9988 / 1.0000) & 0.9982 (0.9957 / 0.9995) & 4.6$\times10^{-3}$ & 0.75 \\
\textbf{PR\textsubscript{on RRnorm}} & 4.5 & 0.9928 (0.9882 / 0.9966) & 0.9856 (0.9667 / 0.9913) & 4.4$\times10^{-3}$ & 0.75 \\
\textbf{P\textsubscript{area}} & 13.0 & 1.0000 (1.0000 / 1.0000) & 1.0000 (0.9995 / 1.0000) & 1.5$\times10^{-3}$ & 0.65 \\
\hline \multicolumn{6}{c}{\textbf{6 hours before POAF} (lag$=6$)} \\ \hline
\textbf{P\textsubscript{energy}} & 11.5 & 0.9991 (0.9981 / 0.9997) & 0.9980 (0.9961 / 0.9987) & 8.3$\times10^{-3}$ & 0.72 \\
\textbf{P\textsubscript{eucl. dist.}} & 4.5 & 0.9941 (0.9895 / 0.9968) & 0.9911 (0.9816 / 0.9922) & 4.8$\times10^{-3}$ & 0.74 \\
\textbf{P\textsubscript{fin. dur.}} & 6.0 & 0.9993 (0.9976 / 1.0000) & 1.0000 (0.9994 / 1.0000) & 5.9$\times10^{-3}$ & 0.72 \\
\hline \multicolumn{6}{c}{\textbf{12 hours before POAF} (lag$=4$)} \\ \hline
\textbf{PQ\textsubscript{off}} & 13.0 & 1.0000 (1.0000 / 1.0000) & 1.0000 (0.9990 / 1.0000) & 5.2$\times10^{-4}$ & 0.65 \\
\textbf{PQ\textsubscript{off RRnorm}} & 9.5 & 1.0000 (1.0000 / 1.0000) & 1.0000 (0.9991 / 1.0000) & 2.2$\times10^{-4}$ & 0.64 \\
\textbf{PQ\textsubscript{on}} & 7.5 & 1.0000 (1.0000 / 1.0000) & 0.9998 (0.9990 / 1.0000) & 7.6$\times10^{-4}$ & 0.71 \\
\textbf{P\textsubscript{gauss. W}} & 20.0 & 1.0000 (1.0000 / 1.0000) & 1.0000 (0.9989 / 1.0000) & 9.9$\times10^{-3}$ & 0.66 \\
\textbf{P\textsubscript{magn.}} & 2.5 & 0.9210 (0.8766 / 0.9576) & 0.8810 (0.8358 / 0.9132) & 7.4$\times10^{-3}$ & 0.74 \\
\textbf{P\textsubscript{area norm.}} & 2.0 & 0.8111 (0.7547 / 0.8485) & 0.7089 (0.6585 / 0.7424) & 1.5$\times10^{-4}$ & 0.84 \\
\textbf{P\textsubscript{rms norm.}} & 2.0 & 0.7889 (0.7472 / 0.8466) & 0.6877 (0.6503 / 0.7236) & 1.2$\times10^{-3}$ & 0.79 \\
\textbf{P\textsubscript{off amp.}} & 8.0 & 0.9971 (0.9952 / 0.9986) & 0.9992 (0.9980 / 1.0000) & 2.3$\times10^{-3}$ & 0.77 \\
\textbf{P\textsubscript{fin. dur.}} & 5.5 & 0.9988 (0.9962 / 0.9995) & 0.9997 (0.9993 / 1.0000) & 9.3$\times10^{-3}$ & 0.73 \\
\textbf{WI$_t$} & 2.5 & 0.8301 (0.8163 / 0.8425) & 0.8083 (0.8008 / 0.8246) & 3.7$\times10^{-3}$ & 0.76 \\ \hline
\end{longtable}
\end{small}
\end{document}
答案1
这可以避免浮点数乱序,并避免表格缩放
\documentclass[12pt]{article}
%\usepackage[margin=20mm]{geometry}
\usepackage{lmodern}
\usepackage{ragged2e}
\usepackage{booktabs, makecell, tabularx}
\renewcommand\theadfont{\small\bfseries}
\renewcommand\theadgape{}
\newcolumntype{L}{>{\RaggedRight}X}
\usepackage{siunitx}
\usepackage{enumitem}
\usepackage{float}
%% To allow tables collumns auto newline
\usepackage{array}
\newcolumntype{L}[1]{>{\raggedright\let\newline\\\arraybackslash\hspace{0pt}}m{#1}}
\newcolumntype{C}[1]{>{\centering\let\newline\\\arraybackslash\hspace{0pt}}m{#1}}
\newcolumntype{R}[1]{>{\raggedleft\let\newline\\\arraybackslash\hspace{0pt}}m{#1}}
\usepackage{multirow, caption}
\usepackage{booktabs} % Beautiful simple tables
\usepackage{paralist} % To enable customizble enumerates
\usepackage{ragged2e}
\usepackage{hyperref}
\usepackage{booktabs,eqparbox,tabularx}
\usepackage{pdflscape}
\usepackage{afterpage}
\usepackage{capt-of}% or use the larger `caption` package
\usepackage{amsmath,calc}
\usepackage{bm}
\usepackage{cleveref}
%\usepackage[table,xcdraw]{xcolor}
\usepackage{longtable}
\begin{document}
\subsubsection{Linear variability}
Significant results obtained when testing the linear variability metrics are presented in Table \ref{table:linear_var_POAF_results}. Briefly, the variability in both time and morphological features were significantly different between POAF and controls far away from the arrhythmia (at least 18 hours away), while only variability in P-wave time features were significant as the arrhythmia onset got closer. The POAF group had higher median variability for all the presented timestamps, and showed increasing variability (slope) in all timestamps except 18 hours before the arrhythmia onset. In contrast, controls presented decreasing variability in the majority of variability regression slope results. The PQ interval (duration and level) was the only feature which had metrics significant after correction for multiple comparisons at 6 and 48 hours before the arrhythmia onset.
\begin{table}[!htbp]
\caption[Significant results obtained when using linear variability metrics to predict postoperative atrial fibrillation.]{Significant results (uncorrected $p<0.01$) obtained when using the linear variability metrics. Results significant after correction for multiple corrections (corrected $p<0.05$) are shaded in grey. The median value (and the first/ third quartiles) of each group are presented.}
\label{table:linear_var_POAF_results}
\tiny
\setlength\tabcolsep{3pt}
\renewcommand\bfdefault{b}
\centering
\renewcommand{\arraystretch}{1.3}
\begin{tabular}{@{}lcccc@{}}
\hline
\textbf{Metrics} & \textbf{Controls} & \textbf{POAF} & \textbf{P-value} & \textbf{AUC} \\ \hline
\multicolumn{5}{c}{\textbf{1 hour before POAF} ($S=5$)} \\ \hline
\textbf{\textit{m}(PQ\textsubscript{on RRnorm})} [a.u.] & 4.8$\times10^{-2}$ (4.0$\times10^{-2}$ / 5.7$\times10^{-2}$) & 5.8$\times10^{-2}$ (5.0$\times10^{-2}$ / 7.6$\times10^{-2}$) & 4.1$\times10^{-3}$ & 0.74 \\
\textbf{\textit{m}(PR\textsubscript{peak RRnorm})} [a.u.] & 1.5$\times10^{-2}$ (1.2$\times10^{-2}$ / 2.2$\times10^{-2}$) & 2.2$\times10^{-2}$ (2.0$\times10^{-2}$ / 4.0$\times10^{-2}$) & 3.9$\times10^{-3}$ & 0.74 \\ \hline
\multicolumn{5}{c}{\textbf{2 hours before POAF} ($S=10$)} \\ \hline
\textbf{\textit{m}(P\textsubscript{dur. RRnorm})} [a.u.] & 5.5$\times10^{-2}$ (4.6$\times10^{-2}$ / 6.5$\times10^{-2}$) & 7.2$\times10^{-2}$ (5.8$\times10^{-2}$ / 8.1$\times10^{-2}$) & 2.9$\times10^{-3}$ & 0.75 \\
\textbf{\textit{m}(PQ\textsubscript{on RRnorm})} [a.u.] & 5.1$\times10^{-2}$ (4.3$\times10^{-2}$ / 6.1$\times10^{-2}$) & 7.6$\times10^{-2}$ (5.7$\times10^{-2}$ / 8.4$\times10^{-2}$) & 1.1$\times10^{-3}$ & 0.78 \\
\textbf{\textit{m}(PR\textsubscript{on RRnorm})} [a.u.] & 4.0$\times10^{-2}$ (3.6$\times10^{-2}$ / 5.1$\times10^{-2}$) & 6.5$\times10^{-2}$ (4.8$\times10^{-2}$ / 7.3$\times10^{-2}$) & 4.1$\times10^{-3}$ & 0.75 \\
\textbf{\textit{m}(PR\textsubscript{peak RRnorm})} [a.u.] & 1.7$\times10^{-2}$ (1.3$\times10^{-2}$ / 3.0$\times10^{-2}$) & 3.5$\times10^{-2}$ (2.2$\times10^{-2}$ / 4.6$\times10^{-2}$) & 3.9$\times10^{-3}$ & 0.75 \\ \hline
\multicolumn{5}{c}{\textbf{4 hours before POAF} ($S=10$)} \\ \hline
\textbf{\textit{m}(PR\textsubscript{peak RRnorm})} [a.u.] & 1.7$\times10^{-2}$ (1.3$\times10^{-2}$ / 2.4$\times10^{-2}$) & 2.8$\times10^{-2}$ (1.9$\times10^{-2}$ / 4.1$\times10^{-2}$) & 8.2$\times10^{-3}$ & 0.73 \\ \hline
\multicolumn{5}{c}{\textbf{6 hours before POAF} ($S=10$)} \\ \hline
\textbf{\textit{m}(P\textsubscript{fin. dur.})} [ms] & 24.0 (16.0 / 30.0) & 28.0 (24.0 / 37.0) & 5.7$\times10^{-3}$ & 0.73 \\
\textbf{\textit{m}(P\textsubscript{dur. RRnorm})} [a.u.] & 5.9$\times10^{-2}$ (5.3$\times10^{-2}$ / 6.3$\times10^{-2}$) & 7.1$\times10^{-2}$ (6.1$\times10^{-2}$ / 9.2$\times10^{-2}$) & 2.2$\times10^{-3}$ & 0.76 \\
\textbf{\textit{m}(PQ\textsubscript{on})} [ms] & 38.0 (32.0 / 44.0) & 44.0 (36.0 / 58.0) & 5.4$\times10^{-3}$ & 0.73 \\
\textbf{\textit{m}(PQ\textsubscript{on RRnorm})} [a.u.] & 5.6$\times10^{-2}$ (4.4$\times10^{-2}$ / 6.2$\times10^{-2}$) & 7.9$\times10^{-2}$ (6.0$\times10^{-2}$ / 9.0$\times10^{-2}$) & 2.9$\times10^{-4}$ & 0.80 \\
\textbf{\textit{m}(PR\textsubscript{peak})} [ms] & 8.0 (8.0 / 12.0) & 16.0 (11.0 / 21.0) & 1.6$\times10^{-3}$ & 0.75 \\
\textbf{\textit{m}(PR\textsubscript{on RRnorm})} [a.u.] & 4.8$\times10^{-2}$ (3.7$\times10^{-2}$ / 5.4$\times10^{-2}$) & 6.9$\times10^{-2}$ (4.8$\times10^{-2}$ / 8.7$\times10^{-2}$) & 5.3$\times10^{-3}$ & 0.73 \\
\textbf{\textit{m}(PR\textsubscript{peak RRnorm})} [a.u.] & 1.5$\times10^{-2}$ (1.3$\times10^{-2}$ / 2.5$\times10^{-2}$) & 3.3$\times10^{-2}$ (1.9$\times10^{-2}$ / 5.4$\times10^{-2}$) & 4.5$\times10^{-3}$ & 0.74 \\ \hline
\multicolumn{5}{c}{\textbf{12 hours before POAF} ($S=5$)} \\ \hline
\textbf{$\boldsymbol{\alpha}$(Q\textsubscript{on amp.})} [mV] & -2.0$\times10^{-6}$ (-6.1$\times10^{-6}$ / -3.0$\times10^{-6}$) & 6.8$\times10^{-6}$ (-1.1$\times10^{-6}$ / 1.1$\times10^{-5}$) & 5.2$\times10^{-3}$ & 0.72 \\ \hline
\multicolumn{5}{c}{\textbf{18 hours before POAF} ($S=10$)} \\ \hline
\textbf{$\boldsymbol{\alpha}$(PQ\textsubscript{on})} [ms] & 9.9$\times10^{-4}$ (-8.9$\times10^{-3}$ / 6.9$\times10^{-3}$) & -9.5$\times10^{-3}$ (-2.4$\times10^{-2}$ / -2.0$\times10^{-3}$) & 1.4$\times10^{-3}$ & 0.76 \\
\textbf{$\boldsymbol{\alpha}$(PQ\textsubscript{level, Pnorm})} [mV] & 2.5$\times10^{-4}$ (-7.2$\times10^{-5}$ / 1.5$\times10^{-3}$) & -4.1$\times10^{-4}$ (-1.1$\times10^{-2}$ / 8.1$\times10^{-5}$) & 1.3$\times10^{-3}$ & 0.78 \\
\textbf{$\boldsymbol{\alpha}$(PR\textsubscript{on})} [ms] & -1.7$\times10^{-4}$ (-8.5$\times10^{-3}$ / 7.0$\times10^{-3}$) & -7.1$\times10^{-3}$ (-2.8$\times10^{-2}$ / -1.7$\times10^{-3}$) & 4.8$\times10^{-3}$ & 0.73 \\
\textbf{$\boldsymbol{\alpha}$(PR\textsubscript{peak})} [ms] & 2.5$\times10^{-4}$ (-3.5$\times10^{-3}$ / 4.4$\times10^{-3}$) & -5.5$\times10^{-3}$ (-1.5$\times10^{-2}$ / -1.7$\times10^{-4}$) & 8.1$\times10^{-3}$ & 0.71 \\ \hline
\multicolumn{5}{c}{\textbf{36 hours before POAF} ($S=30$)} \\ \hline
\textbf{$\boldsymbol{\alpha}$(P\textsubscript{min. vel.})} [mV] & -7.7$\times10^{-7}$ (-5.7$\times10^{-6}$ / 9.5$\times10^{-6}$) & 1.9$\times10^{-5}$ (7.9$\times10^{-7}$ / 4.3$\times10^{-5}$) & 7.7$\times10^{-3}$ & 0.72 \\
\textbf{$\boldsymbol{\alpha}$(P\textsubscript{vel. disp.})} [mV] & -1.1$\times10^{-6}$ (-1.1$\times10^{-5}$ / 1.6$\times10^{-5}$) & 2.7$\times10^{-5}$ (2.4$\times10^{-6}$ / 6.2$\times10^{-5}$) & 9.2$\times10^{-3}$ & 0.71 \\
\textbf{$\boldsymbol{\alpha}$(P\textsubscript{energy})} [$\mu V^2$] & -7.1$\times10^{-10}$ (-6.3$\times10^{-9}$ / 7.4$\times10^{-9}$) & 1.1$\times10^{-8}$ (3.0$\times10^{-9}$ / 2.3$\times10^{-8}$) & 3.4$\times10^{-3}$ & 0.74 \\
\textbf{$\boldsymbol{\alpha}$(P\textsubscript{energy norm.})} [V/s] & -1.1$\times10^{-10}$ (-6.9$\times10^{-10}$ / 4.7$\times10^{-10}$) & 1.1$\times10^{-9}$ (5.1$\times10^{-10}$ / 1.8$\times10^{-9}$) & 1.6$\times10^{-3}$ & 0.76 \\
\textbf{$\boldsymbol{\alpha}$(P\textsubscript{gauss. error})} [a.u.] & -5.1$\times10^{-8}$ (-3.8$\times10^{-6}$ / 2.4$\times10^{-6}$) & 4.5$\times10^{-6}$ (-7.1$\times10^{-8}$ / 7.9$\times10^{-6}$) & 4.9$\times10^{-3}$ & 0.73 \\
\textbf{\textit{m}(P\textsubscript{fin. dur.})} [ms] & 24.0 (16.0 / 28.0) & 32.0 (24.0 / 37.0) & 6.7$\times10^{-3}$ & 0.72 \\ \hline
\multicolumn{5}{c}{\textbf{42 hours before POAF} ($S=5$)} \\ \hline
\textbf{\textit{m}(P\textsubscript{fin. dur.})} [ms] & 16.0 (16.0 / 24.0) & 24.0 (24.0 / 32.0) & 8.8$\times10^{-3}$ & 0.72 \\
\textbf{\textit{m}(PQ\textsubscript{off})} [ms] & 24.0 (16.0 / 24.0) & 24.0 (24.0 / 32.0) & 1.0$\times10^{-2}$ & 0.72 \\
\textbf{\textit{m}(PQ\textsubscript{on RRnorm})} [a.u.] & 4.1$\times10^{-2}$ (3.6$\times10^{-2}$ / 5.4$\times10^{-2}$) & 5.6$\times10^{-2}$ (4.4$\times10^{-2}$ / 6.9$\times10^{-2}$) & 6.9$\times10^{-3}$ & 0.74 \\
\textbf{\textit{m}(PQ\textsubscript{off RRnorm})} [a.u.] & 3.1$\times10^{-2}$ (2.0$\times10^{-2}$ / 4.1$\times10^{-2}$) & 4.2$\times10^{-2}$ (3.3$\times10^{-2}$ / 5.2$\times10^{-2}$) & 4.8$\times10^{-3}$ & 0.75 \\
\textbf{\textit{m}(PR\textsubscript{off RRnorm})} [a.u.] & 2.4$\times10^{-2}$ (1.4$\times10^{-2}$ / 3.5$\times10^{-2}$) & 3.5$\times10^{-2}$ (3.0$\times10^{-2}$ / 4.3$\times10^{-2}$) & 7.7$\times10^{-3}$ & 0.73 \\
\hline
\multicolumn{5}{c}{\textbf{48 hours before POAF} ($S=10$)} \\ \hline
\textbf{$\boldsymbol{\alpha}$(P\textsubscript{magn.})} [mV] & -1.4$\times10^{-5}$ (-3.4$\times10^{-5}$ / -8.1$\times10^{-7}$) & 6.7$\times10^{-6}$ (-5.2$\times10^{-6}$ / 1.6$\times10^{-5}$) & 2.1$\times10^{-3}$ & 0.78 \\
\textbf{$\boldsymbol{\alpha}$(P\textsubscript{rms norm.})} [mV] & -6.3$\times10^{-7}$ (-1.5$\times10^{-6}$ / -4.1$\times10^{-9}$) & 2.7$\times10^{-7}$ (7.8$\times10^{-8}$ / 6.4$\times10^{-7}$) & 9.3$\times10^{-3}$ & 0.73 \\
\textbf{$\boldsymbol{\alpha}$(P\textsubscript{energy})} [$\mu V^2$] & -4.7$\times10^{-9}$ (-1.8$\times10^{-8}$ / 1.3$\times10^{-9}$) & 2.0$\times10^{-9}$ (1.5$\times10^{-10}$ / 9.2$\times10^{-9}$) & 7.0$\times10^{-3}$ & 0.74 \\
\textbf{$\boldsymbol{\alpha}$(P\textsubscript{energy norm.})} [V/s] & -4.1$\times10^{-10}$ (-1.2$\times10^{-9}$ / 4.1$\times10^{-11}$) & 2.1$\times10^{-10}$ (9.6$\times10^{-12}$ / 1.6$\times10^{-9}$) & 3.9$\times10^{-3}$ & 0.76 \\
\textbf{$\boldsymbol{\alpha}$(PQ\textsubscript{level, Pnorm})} [mV] & -3.7$\times10^{-3}$ (-7.0$\times10^{-2}$ / -6.6$\times10^{-4}$) & 3.0$\times10^{-5}$ (-2.1$\times10^{-4}$ / 1.8$\times10^{-3}$) & 7.4$\times10^{-4}$ & 0.86 \\
\textbf{\textit{m}(P\textsubscript{eucl. dist.})} [a.u.] & 9.3$\times10^{-2}$ (7.3$\times10^{-2}$ / 1.2$\times10^{-1}$) & 1.4$\times10^{-1}$ (9.6$\times10^{-2}$ / 1.9$\times10^{-1}$) & 6.6$\times10^{-3}$ & 0.74 \\ \hline
\end{tabular}
\end{table}
\clearpage
\subsubsection{Non-linear variability}
Non-linear CTM was found to significantly differ between POAF patients and controls in all the tested timestamps (Table \ref{table:CTM_results_POAF}). Controls were associated with higher CTM in the great majority of features and timestamps. However, CTM applied over the features P\textsubscript{vel. disp.}, P\textsubscript{fin. dur}, P\textsubscript{magn.}, PQ\textsubscript{level}, PQ\textsubscript{level Pnorm} and P\textsubscript{off amp.} was sometimes higher in POAF patients. Finally, several P-wave time- and morphological metrics were significant after correction for multiple comparisons 1, 12, 18, 42 and 48 hours before the arrhythmia onset, all of them showing higher CTM in controls.
\begin{footnotesize}
\setlength\tabcolsep{1.5pt}
\begin{longtable}{@{}llllll@{}}
\caption[Significant results obtained when using non-linear variability metrics to predict postoperative atrial fibrillation.]{Significant results (uncorrected $p<0.01$) obtained when testing the non-linear variability results. The presented values of optimal $\rho$ correspond to the number of multiples of the standard deviation which minimised the \textit{p}-value for the correspondent feature. Results significant after correction for multiple corrections (corrected $p<0.05$) are shaded in grey. The median value (and the first/ third quartiles) of each group are presented (in arbitrary units).}
\label{table:CTM_results_POAF} \\
\hline \multicolumn{1}{c}{\textbf{Metrics}} & \multicolumn{1}{c}{$\boldsymbol{\rho}$} & \multicolumn{1}{c}{\textbf{Controls}} & \multicolumn{1}{c}{\textbf{POAF}} & \multicolumn{1}{c}{\textbf{P-values}} & \multicolumn{1}{c}{\textbf{AUC}} \\ \hline
\endfirsthead
\multicolumn{3}{c}%
{{\bfseries \tablename\ \thetable{} -- continued from previous page}} \\
\hline \multicolumn{1}{c}{\textbf{Metrics}} & \multicolumn{1}{c}{$\boldsymbol{\rho}$} & \multicolumn{1}{c}{\textbf{Controls}} & \multicolumn{1}{c}{\textbf{POAF}} & \multicolumn{1}{c}{\textbf{P-values}} & \multicolumn{1}{c}{\textbf{AUC}} \\ \hline
\endhead
\hline \multicolumn{6}{r}{{Continued on next page}} \\ \hline
\endfoot
\endlastfoot
\multicolumn{6}{c}{\textbf{1 hour before POAF} (lag$=5$)} \\ \hline
\textbf{PQ\textsubscript{off RRnorm}} & 3.0 & 0.8944 (0.8751 / 0.9085) & 0.9089 (0.8996 / 0.9367) & 2.7$\times10^{-3}$ & 0.75 \\
\textbf{PR\textsubscript{off RRnorm}} & 8.0 & 1.0000 (0.9994 / 1.0000) & 0.9994 (0.9979 / 1.0000) & 6.0$\times10^{-3}$ & 0.71 \\
\textbf{PR\textsubscript{on RRnorm}} & 4.0 & 0.9863 (0.9791 / 0.9931) & 0.9741 (0.9554 / 0.9814) & 3.1$\times10^{-4}$ & 0.80 \\
\textbf{PR\textsubscript{peak RRnorm}} & 3.5 & 0.9849 (0.9677 / 0.9942) & 0.9529 (0.9303 / 0.9735) & 5.4$\times10^{-4}$ & 0.79 \\
\textbf{P\textsubscript{area}} & 13.0 & 1.0000 (1.0000 / 1.0000) & 1.0000 (0.9999 / 1.0000) & 1.2$\times10^{-3}$ & 0.62 \\
\textbf{P\textsubscript{dur. RRnorm}} & 4.0 & 0.9822 (0.9758 / 0.9884) & 0.9714 (0.9637 / 0.9767) & 3.3$\times10^{-4}$ & 0.80 \\
\textbf{P\textsubscript{eucl. dist.}} & 4.0 & 0.9906 (0.9822 / 0.9930) & 0.9754 (0.9658 / 0.9834) & 3.1$\times10^{-5}$ & 0.85 \\
\textbf{P\textsubscript{gauss. A}} & 6.0 & 0.9981 (0.9958 / 0.9990) & 0.9947 (0.9907 / 0.9977) & 3.9$\times10^{-3}$ & 0.74 \\
\textbf{P\textsubscript{magn.}} & 4.0 & 0.9826 (0.9770 / 0.9896) & 0.9721 (0.9564 / 0.9816) & 9.2$\times10^{-4}$ & 0.78 \\
\textbf{P\textsubscript{area norm.}} & 4.0 & 0.9776 (0.9687 / 0.9843) & 0.9647 (0.9560 / 0.9724) & 4.8$\times10^{-4}$ & 0.79 \\
\textbf{P\textsubscript{rms norm.}} & 5.0 & 0.9912 (0.9855 / 0.9935) & 0.9842 (0.9787 / 0.9896) & 5.0$\times10^{-3}$ & 0.73 \\
\textbf{P\textsubscript{vel. disp.}} & 4.0 & 0.9821 (0.9781 / 0.9870) & 0.9764 (0.9726 / 0.9816) & 3.5$\times10^{-3}$ & 0.74 \\
\textbf{CCI} & 10.5 & 1.0000 (1.0000 / 1.0000) & 1.0000 (0.9993 / 1.0000) & 3.5$\times10^{-3}$ & 0.74 \\
\hline \multicolumn{6}{c}{\textbf{2 hours before POAF} (lag$=8$)} \\ \hline
\textbf{PQ\textsubscript{off}} & 8.5 & 1.0000 (1.0000 / 1.0000) & 1.0000 (0.9987 / 1.0000) & 2.8$\times10^{-3}$ & 0.67 \\
\textbf{PR\textsubscript{on}} & 11.0 & 1.0000 (1.0000 / 1.0000) & 1.0000 (0.9992 / 1.0000) & 5.2$\times10^{-3}$ & 0.65 \\
\textbf{PR\textsubscript{peak}} & 14.0 & 1.0000 (1.0000 / 1.0000) & 1.0000 (0.9991 / 1.0000) & 5.9$\times10^{-3}$ & 0.67 \\
\textbf{PQ\textsubscript{off RRnorm}} & 9.5 & 1.0000 (1.0000 / 1.0000) & 1.0000 (0.9991 / 1.0000) & 6.7$\times10^{-3}$ & 0.65 \\
\textbf{P\textsubscript{eucl. dist.}} & 4.5 & 0.9952 (0.9892 / 0.9968) & 0.9884 (0.9756 / 0.9942) & 2.8$\times10^{-3}$ & 0.76 \\
\textbf{P\textsubscript{gauss. C}} & 14.5 & 1.0000 (0.9992 / 1.0000) & 0.9991 (0.9986 / 0.9997) & 7.1$\times10^{-3}$ & 0.71 \\
\textbf{P\textsubscript{area norm.}} & 3.5 & 0.9593 (0.9466 / 0.9684) & 0.9372 (0.9327 / 0.9548) & 5.3$\times10^{-3}$ & 0.74 \\
\textbf{P\textsubscript{fin. dur.}} & 6.0 & 0.9994 (0.9981 / 1.0000) & 1.0000 (0.9998 / 1.0000) & 2.7$\times10^{-3}$ & 0.75 \\
\hline \multicolumn{6}{c}{\textbf{4 hours before POAF} (lag$=6$)} \\ \hline
\textbf{P\textsubscript{dur RRnorm}} & 6.0 & 0.9995 (0.9988 / 1.0000) & 0.9982 (0.9957 / 0.9995) & 4.6$\times10^{-3}$ & 0.75 \\
\textbf{PR\textsubscript{on RRnorm}} & 4.5 & 0.9928 (0.9882 / 0.9966) & 0.9856 (0.9667 / 0.9913) & 4.4$\times10^{-3}$ & 0.75 \\
\textbf{P\textsubscript{area}} & 13.0 & 1.0000 (1.0000 / 1.0000) & 1.0000 (0.9995 / 1.0000) & 1.5$\times10^{-3}$ & 0.65 \\
\hline \multicolumn{6}{c}{\textbf{6 hours before POAF} (lag$=6$)} \\ \hline
\textbf{P\textsubscript{energy}} & 11.5 & 0.9991 (0.9981 / 0.9997) & 0.9980 (0.9961 / 0.9987) & 8.3$\times10^{-3}$ & 0.72 \\
\textbf{P\textsubscript{eucl. dist.}} & 4.5 & 0.9941 (0.9895 / 0.9968) & 0.9911 (0.9816 / 0.9922) & 4.8$\times10^{-3}$ & 0.74 \\
\textbf{P\textsubscript{fin. dur.}} & 6.0 & 0.9993 (0.9976 / 1.0000) & 1.0000 (0.9994 / 1.0000) & 5.9$\times10^{-3}$ & 0.72 \\
\hline \multicolumn{6}{c}{\textbf{12 hours before POAF} (lag$=4$)} \\ \hline
\textbf{PQ\textsubscript{off}} & 13.0 & 1.0000 (1.0000 / 1.0000) & 1.0000 (0.9990 / 1.0000) & 5.2$\times10^{-4}$ & 0.65 \\
\textbf{PQ\textsubscript{off RRnorm}} & 9.5 & 1.0000 (1.0000 / 1.0000) & 1.0000 (0.9991 / 1.0000) & 2.2$\times10^{-4}$ & 0.64 \\
\textbf{PQ\textsubscript{on}} & 7.5 & 1.0000 (1.0000 / 1.0000) & 0.9998 (0.9990 / 1.0000) & 7.6$\times10^{-4}$ & 0.71 \\
\textbf{P\textsubscript{gauss. W}} & 20.0 & 1.0000 (1.0000 / 1.0000) & 1.0000 (0.9989 / 1.0000) & 9.9$\times10^{-3}$ & 0.66 \\
\textbf{P\textsubscript{magn.}} & 2.5 & 0.9210 (0.8766 / 0.9576) & 0.8810 (0.8358 / 0.9132) & 7.4$\times10^{-3}$ & 0.74 \\
\textbf{P\textsubscript{area norm.}} & 2.0 & 0.8111 (0.7547 / 0.8485) & 0.7089 (0.6585 / 0.7424) & 1.5$\times10^{-4}$ & 0.84 \\
\textbf{P\textsubscript{rms norm.}} & 2.0 & 0.7889 (0.7472 / 0.8466) & 0.6877 (0.6503 / 0.7236) & 1.2$\times10^{-3}$ & 0.79 \\
\textbf{P\textsubscript{off amp.}} & 8.0 & 0.9971 (0.9952 / 0.9986) & 0.9992 (0.9980 / 1.0000) & 2.3$\times10^{-3}$ & 0.77 \\
\textbf{P\textsubscript{fin. dur.}} & 5.5 & 0.9988 (0.9962 / 0.9995) & 0.9997 (0.9993 / 1.0000) & 9.3$\times10^{-3}$ & 0.73 \\
\textbf{WI$_t$} & 2.5 & 0.8301 (0.8163 / 0.8425) & 0.8083 (0.8008 / 0.8246) & 3.7$\times10^{-3}$ & 0.76 \\ \hline
\end{longtable}
\end{footnotesize}
\end{document}