所以我之前的问题得到了很好的回答,但是我遇到了一些问题。我想将以下列表移到左侧(小缩进):
Let $G$ be a group, and let $G = \mathbb{Z}_5 = \{0,1,2,3,4\}$.
Let $\chi:G \rightarrow \mathbb{Z} = \{\mathbb{Z}\in\mathbb{C}:\lvert{\mathbb{Z}\rvert}=1\}$.
Now we have:
%
\begin{align*}
\chi\{0\} &= 1\\
\chi\{1\} &= a\\
\chi\{2\} &= a^2\\
\chi\{3\} &= a^3\\
\chi\{4\} &= a^4
\end{align*}
with $a = \exp\{\frac{2\pi\iu}{5}\}$ hence $a^5=1$.
我还想将“代码”的最后一行放在与 chi(2) 相同的行中,因为这样看起来更专业。另外,我不想要 exp 而是实际指数,因为它看起来好得多。
答案1
fleqn
具有环境 from 的解决方案nccmath
:它使所有显示方程式从距左边距的固定距离开始(默认0pt
),类似于fleqn
选项 from amsmath
,但仅适用于环境。
\documentclass{article}
\usepackage{mathtools, amssymb, nccmath}
\newcommand{\iu}{\mathrm{i}}%
\begin{document}
Let $G$ be a group, and let $G = \mathbb{Z}_5 = \{0,1,2,3,4\}$.
Let $\chi:G \rightarrow \mathbb{Z} = \{\mathbb{Z}\in\mathbb{C}:\lvert{\mathbb{Z}\rvert}=1\}$.
Now we have:
\begin{fleqn}[\parindent]
\begin{align*}
\chi\{0\} &= 1 &&\\% only need it once
\chi\{1\} &= a \\
\chi\{2\} &= a^2 \\
\chi\{3\} &= a^3 \\
\chi\{4\} &= a^4 \\
\intertext[1ex]{with $a = \exp\{\frac{2\pi\iu}{5}\}$ hence $a^5=1$.}
\end{align*}
\end{fleqn}
\end{document}
答案2
这就是你想要的吗?
\documentclass{article}
\usepackage{amsmath}
\usepackage{amsfonts}
%\usepackage{showframe}% dubugging tool
\newcommand{\iu}{\text{i}}% just a guess. couldn't find definition
\begin{document}
Let $G$ be a group, and let $G = \mathbb{Z}_5 = \{0,1,2,3,4\}$.
Let $\chi:G \rightarrow \mathbb{Z} = \{\mathbb{Z}\in\mathbb{C}:\lvert{\mathbb{Z}\rvert}=1\}$.
Now we have:
\par% assuming \parskip=0pt
\begin{minipage}{\dimexpr \textwidth-\parindent}
\begin{flalign*}
\chi\{0\} &= 1 &&\\% only need it once
\chi\{1\} &= a \\
\chi\{2\} &= a^2 \\
\chi\{3\} &= a^3 \\
\chi\{4\} &= a^4
\end{flalign*}
\hrule height0pt% a sort of horizontal strut
\end{minipage}
with $a = \exp\{\frac{2\pi\iu}{5}\}$ hence $a^5=1$.
\end{document}
答案3
我提供了一种完全不同的方法来排版该数学公式(并修复了一些错误)。如果你想要获得专业的外观,那么你首先应该不要浪费空间。该函数的规则适合一行。不要重复符号:
让G成为一个团体,让G= Z 5 = {0,1,2,3,4}
是错误的,因为G不是A组,因为您只是为一个非常特定的组定义了一个简写。
\documentclass{article}
\usepackage{amsmath,amssymb}
\newcommand{\numberset}[1]{\mathbb{#1}}
\newcommand{\Z}{\numberset{Z}}
\newcommand{\C}{\numberset{C}}
\newcommand{\T}{\numberset{T}}
\newcommand{\iu}{i}
\begin{document}
Consider the group $G = \Z_5 = \{0,1,2,3,4\}$ and the \emph{circle group}
\begin{equation*}
\T = \{z\in\C:\lvert z\rvert=1\}.
\end{equation*}
Set $a = \exp(\frac{2\pi\iu}{5})$ and note that $a^5=1$. Define
$\chi\colon G \rightarrow \T$ by
\begin{equation*}
\chi\{0\} = 1,\quad
\chi\{1\} = a,\quad
\chi\{2\} = a^2,\quad
\chi\{3\} = a^3,\quad
\chi\{4\} = a^4.
\end{equation*}
It is easy to check that $\chi$ is a well defined map.
\end{document}
请注意,您可以为经常使用的符号定义方便的快捷方式,从而使代码更易于阅读和维护。