我无法解决这个错误:
! Misplaced \noalign.
\hline ->\noalign
{\ifnum 0=`}\fi \hrule \@height \arrayrulewidth \futurelet...
l.12 \hline
我的代码是这样的:
\documentclass{article}
\usepackage{slashbox}
\usepackage{siunitx}
\begin{document}
\begin{table}
\begin{center}
\begin{tabular}{|c||c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
$
\hline
\backslashbox{\theta_1}{\theta_2} & \ang{0} & \ang{30} & \ang{45} & \ang{60} & \ang{90} & \ang{120} & \ang{135} & \ang{150} & \ang{180} & \ang{210} & \ang{225} & \ang{240} & \ang{270} & \ang{300} & \ang{315} & \ang{330} & \ang{360} \\
\hline \hline
\ang{0} & -1 & -\frac{\sqrt{3}}{2} & -\frac{1}{\sqrt{2}} & \frac{1}{2} & 0 & \frac{1}{2} & \frac{1}{\sqrt{2}} & \frac{\sqrt{3}}{2} & 1 & \frac{\sqrt{3}}{2} & \frac{1}{\sqrt{2}} & \frac{1}{2} & 0 & -\frac{1}{2} & -\frac{1}{\sqrt{2}} & -\frac{\sqrt{3}}{2} & -1 \\
\hline
\ang{30} & -\frac{\sqrt{3}}{2} & -1 & -\frac{\sqrt{6}+\sqrt{2}}{4} & -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & \frac{\sqrt{6}-\sqrt{2}}{4} & \frac{1}{2} & \frac{\sqrt{3}}{2} & 1 & \frac{\sqrt{6}+\sqrt{2}}{4} & \frac{\sqrt{3}}{2} & \frac{1}{2} & 0 & -\frac{\sqrt{6}-\sqrt{2}}{4} & -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
\hline
\ang{45} & -\frac{1}{\sqrt{2}} & -\frac{\sqrt{6}+\sqrt{2}}{4} & -1 & -\frac{\sqrt{6}+\sqrt{2}}{4} & -\frac{1}{\sqrt{2}} & -\frac{\sqrt{6}-\sqrt{2}}{4} & 0 & \frac{\sqrt{6}-\sqrt{2}}{4} & \frac{1}{\sqrt{2}} & \frac{\sqrt{6}+\sqrt{2}}{4} & 1 & \frac{\sqrt{6}+\sqrt{2}}{4} & \frac{1}{\sqrt{2}} & \frac{\sqrt{6}-\sqrt{2}}{4} & 0 & -\frac{\sqrt{6}-\sqrt{2}}{4} & -\frac{1}{\sqrt{2}} \\
\hline
\ang{60} & -\frac{1}{2} & -\frac{\sqrt{3}}{2} & -\frac{\sqrt{6}+\sqrt{2}}{4} & -1 & -\frac{\sqrt{3}}{2} & -\frac{1}{2} & -\frac{\sqrt{6}-\sqrt{2}}{4} & 0 & \frac{1}{2} & \frac{\sqrt{3}}{2} & \frac{\sqrt{6}+\sqrt{2}}{4} & 1 & \frac{\sqrt{3}}{2} & \frac{1}{2} & \frac{\sqrt{6}-\sqrt{2}}{4} & 0 & -\frac{1}{2} \\
\hline
\ang{90} & 0 & -\frac{1}{2} & -\frac{1}{\sqrt{2}} & -\frac{\sqrt{3}}{2} & -1 & -\frac{\sqrt{3}}{2} & -\frac{1}{\sqrt{2}} & -\frac{1}{2} & 0 & \frac{1}{2} & \frac{1}{\sqrt{2}} & \frac{\sqrt{3}}{2} & 1 & \frac{\sqrt{3}}{2} & \frac{1}{\sqrt{2}} & \frac{1}{2} & 0 \\
\hline
\ang{120} & \frac{1}{2} & 0 & -\frac{\sqrt{6}-\sqrt{2}}{4} & -\frac{1}{2} & -\frac{\sqrt{3}}{2} & -1 & -\frac{\sqrt{6}+\sqrt{2}}{4} & -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & \frac{\sqrt{6}-\sqrt{2}}{4} & \frac{1}{2} & \frac{\sqrt{3}}{2} & 1 & \frac{\sqrt{6}+\sqrt{2}}{4} & \frac{\sqrt{3}}{2} & \frac{1}{2} \\
\hline
\ang{135} & \frac{1}{\sqrt{2}} & \frac{\sqrt{6}-\sqrt{2}}{4} & 0 & -\frac{\sqrt{6}-\sqrt{2}}{4} & -\frac{1}{\sqrt{2}} & -\frac{\sqrt{6}+\sqrt{2}}{4} & -1 & -\frac{\sqrt{6}+\sqrt{2}}{4} & -\frac{1}{\sqrt{2}} & -\frac{\sqrt{6}-\sqrt{2}{4} & 0 & \frac{\sqrt{6}-\sqrt{2}}{4} & \frac{1}{\sqrt{2}} & \frac{\sqrt{6}+\sqrt{2}}{4} & 1 & \frac{\sqrt{6}+\sqrt{2}}{4} & \frac{1}{\sqrt{2}} \\
\hline
\ang{150} & \frac{\sqrt{3}}{2} & \frac{1}{2} & \frac{\sqrt{6}-\sqrt{2}}{4} & 0 & -\frac{1}{2} & -\frac{\sqrt{3}}{2} & -\frac{\sqrt{6}+\sqrt{2}}{4} & -1 & -\frac{\sqrt{3}}{2] & -\frac{1}{2} & -\frac{\sqrt{6}-\sqrt{2}}{4} & 0 & \frac{1}{2} & \frac{\sqrt{3}}{2} & \frac{\sqrt{6}+\sqrt{2}}{4} & 1 & \frac{\sqrt{3}}{2} \\
\hline
\ang{180} & 1 & \frac{\sqrt{3}}{2} & \frac{1}{\sqrt{2}} & \frac{1}{2} & 0 & -\frac{1}{2} & -\frac{1}{\sqrt{2}} & -\frac{\sqrt{3}}{2} & -1 & -\frac{\sqrt{3}}{2} & -\frac{1}{\sqrt{2}} & -\frac{1}{2} & 0 & \frac{1}{2} & \frac{1}{\sqrt{2}} & \frac{\sqrt{3}}{2} & 1 \\
\hline
\ang{210} & \frac{\sqrt{3}}{2} & 1 & \frac{\sqrt{6}+\sqrt{2}}{4} & \frac{\sqrt{3}}{2} & \frac{1}{2} & 0 & -\frac{\sqrt{6}-\sqrt{2}}{4} & -\frac{1}{2} & -\frac{\sqrt{3}}{2} & -1 & -\frac{\sqrt{6}+\sqrt{2}}{4} & \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & \frac{\sqrt{6}-\sqrt{2}}{4} & \frac{1}{2} & \frac{\sqrt{3}}{2} \\
\hline
\ang{225} & \frac{1}{\sqrt{2}} & \frac{\sqrt{6}+\sqrt{2}}{4} & 1 & \frac{\sqrt{6}+\sqrt{2}}{4} & \frac{1}{\sqrt{2}} & \frac{\sqrt{6}-\sqrt{2}}{4} & 0 & -\frac{\sqrt{6}-\sqrt{2}}{4} & -\frac{1}{\sqrt{2}} & -\frac{\sqrt{6}+\sqrt{2}}{4} & -1 & -\frac{\sqrt{6}+\sqrt{2}}{4} & -\frac{1}{\sqrt{2}} & -\frac{\sqrt{6}-\sqrt{2}}{4} & 0 & \frac{\sqrt{6}-\sqrt{2}}{4} & \frac{1}{\sqrt{2}} \\
\hline
\ang{240} & \frac{1}{2} & \frac{\sqrt{3}}{2} & \frac{\sqrt{6}+\sqrt{2}}{4} & 1 & \frac{\sqrt{3}}{2} & \frac{1}{2} & \frac{\sqrt{6}-\sqrt{2}}{4} & 0 & -\frac{1}{2} & -\frac{\sqrt{3}}{2} & -\frac{\sqrt{6}-\sqrt{2}}{4} & -1 & -\frac{\sqrt{3}}{2} & -\frac{1}{2} & -\frac{\sqrt{6}-\sqrt{2}}{4} & 0 & \frac{1}{2} \\
\hline
\ang{270} & 0 & \frac{1}{2} & \frac{1}{\sqrt{2}} & \frac{\sqrt{3}}{2} & 1 & \frac{\sqrt{3}}{2} & \frac{1}{\sqrt{2}} & \frac{1}{2} & 0 & -\frac{1}{2} & -\frac{1}{\sqrt{2}} & -\frac{\sqrt{3}}{2} & -1 & -\frac{\sqrt{3}}{2} & -\frac{1}{\sqrt{2}} & -\frac{1}{2} & 0 \\
\hline
\ang{300} & -\frac{1}{2} & 0 & \frac{\sqrt{6}-\sqrt{2}}{4} & \frac{1}{2} & \frac{\sqrt{3}}{2} & 1 & \frac{\sqrt{6}+\sqrt{2}}{4} & \frac{\sqrt{3}}{2} & \frac{1}{2} & 0 & -\frac{\sqrt{6}-\sqrt{2}}{4} & -\frac{1}{2} & -\frac{\sqrt{3}}{2} & -1 & -\frac{\sqrt{6}+\sqrt{2}}{4} & -\frac{1}{\sqrt{2}} & -\frac{1}{2} \\
\hline
\ang{315} & -\frac{1}{\sqrt{2}} & -\frac{\sqrt{6}-\sqrt{2}}{4} & 0 & \frac{\sqrt{6}-\sqrt{2}}{4} & \frac{1}{\sqrt{2}} & \frac{\sqrt{6}+\sqrt{2}}{4} & 1 & \frac{\sqrt{6}+\sqrt{2}}{4} & \frac{1}{\sqrt{2}} & \frac{\sqrt{6}-\sqrt{2}}{4} & 0 & -\frac{\sqrt{6}-\sqrt{2}}{4} & -\frac{1}{\sqrt{2}} & -\frac{\sqrt{6}+\sqrt{2}}{4} & -1 & -\frac{\sqrt{6}+\sqrt{2}}{4} & -\frac{1}{\sqrt{2}} \\
\hline
\ang{330} & -\frac{\sqrt{3}}{2} & -\frac{1}{2} & -\frac{\sqrt{6}-\sqrt{2}}{4} & 0 & \frac{1}{2} & \frac{\sqrt{3}}{2} & \frac{\sqrt{6}+\sqrt{2}}{4} & 1 & \frac{\sqrt{3}}{2} & \frac{1}{2} & \frac{\sqrt{6}-\sqrt{2}}{4} & 0 & -\frac{1}{2} & -\frac{\sqrt{3}}{2} & -\frac{\sqrt{6}+\sqrt{2}}{4} & -1 & -\frac{\sqrt{3}}{2} \\
\hline
\ang{360} & -1 & -\frac{\sqrt{3}}{2} & -\frac{1}{\sqrt{2}} & -\frac{1}{2} & 0 & \frac{1}{2} & \frac{1}{\sqrt{2}} & \frac{\sqrt{3}}{2} & 1 & \frac{\sqrt{3}}{2} & \frac{1}{\sqrt{2}} & \frac{1}{2} & 0 & -\frac{1}{2} & -\frac{1}{\sqrt{2}} & -\frac{\sqrt{3}}{2} & -1 \\
\hline
$
\end{tabular}
\end{center}
\end{table}
\end{document}
我是 TeX 初学者,因此非常感激任何帮助。
答案1
为了在数学模式下设置表格的条目,您需要array
。但是,slashbox
和diagbox
(较新且维护良好)显然都不能用于array
。
一个解决方法是告诉 LaTeX 设置每一个数学模式中的列。但您不能只陈述$
after\begin{tabular}{...}
和 before \end{tabular}
。
\documentclass{article}
\usepackage[a4paper,landscape,margin=1cm]{geometry}
\usepackage{diagbox,array}
\usepackage{siunitx}
\begin{document}
\begin{table}
\centering
\addtolength{\tabcolsep}{-3pt}
\begin{tabular}{|c|| *{17}{>{$}c<{$}|}}
\hline
\diagbox{$\theta_1$}{$\theta_2$}
& \ang{0} & \ang{30} & \ang{45} & \ang{60} & \ang{90} & \ang{120} & \ang{135} & \ang{150} & \ang{180} & \ang{210} & \ang{225} & \ang{240} & \ang{270} & \ang{300} & \ang{315} & \ang{330} & \ang{360} \\
\hline \hline
\ang{0} & -1 & -\frac{\sqrt{3}}{2} & -\frac{1}{\sqrt{2}} & \frac{1}{2} & 0 & \frac{1}{2} & \frac{1}{\sqrt{2}} & \frac{\sqrt{3}}{2} & 1 & \frac{\sqrt{3}}{2} & \frac{1}{\sqrt{2}} & \frac{1}{2} & 0 & -\frac{1}{2} & -\frac{1}{\sqrt{2}} & -\frac{\sqrt{3}}{2} & -1 \\
\hline
\ang{30} & -\frac{\sqrt{3}}{2} & -1 & -\frac{\sqrt{6}+\sqrt{2}}{4} & -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & \frac{\sqrt{6}-\sqrt{2}}{4} & \frac{1}{2} & \frac{\sqrt{3}}{2} & 1 & \frac{\sqrt{6}+\sqrt{2}}{4} & \frac{\sqrt{3}}{2} & \frac{1}{2} & 0 & -\frac{\sqrt{6}-\sqrt{2}}{4} & -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
\hline
\ang{45} & -\frac{1}{\sqrt{2}} & -\frac{\sqrt{6}+\sqrt{2}}{4} & -1 & -\frac{\sqrt{6}+\sqrt{2}}{4} & -\frac{1}{\sqrt{2}} & -\frac{\sqrt{6}-\sqrt{2}}{4} & 0 & \frac{\sqrt{6}-\sqrt{2}}{4} & \frac{1}{\sqrt{2}} & \frac{\sqrt{6}+\sqrt{2}}{4} & 1 & \frac{\sqrt{6}+\sqrt{2}}{4} & \frac{1}{\sqrt{2}} & \frac{\sqrt{6}-\sqrt{2}}{4} & 0 & -\frac{\sqrt{6}-\sqrt{2}}{4} & -\frac{1}{\sqrt{2}} \\
\hline
\ang{60} & -\frac{1}{2} & -\frac{\sqrt{3}}{2} & -\frac{\sqrt{6}+\sqrt{2}}{4} & -1 & -\frac{\sqrt{3}}{2} & -\frac{1}{2} & -\frac{\sqrt{6}-\sqrt{2}}{4} & 0 & \frac{1}{2} & \frac{\sqrt{3}}{2} & \frac{\sqrt{6}+\sqrt{2}}{4} & 1 & \frac{\sqrt{3}}{2} & \frac{1}{2} & \frac{\sqrt{6}-\sqrt{2}}{4} & 0 & -\frac{1}{2} \\
\hline
\ang{90} & 0 & -\frac{1}{2} & -\frac{1}{\sqrt{2}} & -\frac{\sqrt{3}}{2} & -1 & -\frac{\sqrt{3}}{2} & -\frac{1}{\sqrt{2}} & -\frac{1}{2} & 0 & \frac{1}{2} & \frac{1}{\sqrt{2}} & \frac{\sqrt{3}}{2} & 1 & \frac{\sqrt{3}}{2} & \frac{1}{\sqrt{2}} & \frac{1}{2} & 0 \\
\hline
\ang{120} & \frac{1}{2} & 0 & -\frac{\sqrt{6}-\sqrt{2}}{4} & -\frac{1}{2} & -\frac{\sqrt{3}}{2} & -1 & -\frac{\sqrt{6}+\sqrt{2}}{4} & -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & \frac{\sqrt{6}-\sqrt{2}}{4} & \frac{1}{2} & \frac{\sqrt{3}}{2} & 1 & \frac{\sqrt{6}+\sqrt{2}}{4} & \frac{\sqrt{3}}{2} & \frac{1}{2} \\
\hline
\ang{135} & \frac{1}{\sqrt{2}} & \frac{\sqrt{6}-\sqrt{2}}{4} & 0 & -\frac{\sqrt{6}-\sqrt{2}}{4} & -\frac{1}{\sqrt{2}} & -\frac{\sqrt{6}+\sqrt{2}}{4} & -1 & -\frac{\sqrt{6}+\sqrt{2}}{4} & -\frac{1}{\sqrt{2}} & -\frac{\sqrt{6}-\sqrt{2}}{4} & 0 & \frac{\sqrt{6}-\sqrt{2}}{4} & \frac{1}{\sqrt{2}} & \frac{\sqrt{6}+\sqrt{2}}{4} & 1 & \frac{\sqrt{6}+\sqrt{2}}{4} & \frac{1}{\sqrt{2}} \\
\hline
\ang{150} & \frac{\sqrt{3}}{2} & \frac{1}{2} & \frac{\sqrt{6}-\sqrt{2}}{4} & 0 & -\frac{1}{2} & -\frac{\sqrt{3}}{2} & -\frac{\sqrt{6}+\sqrt{2}}{4} & -1 & -\frac{\sqrt{3}}{2} & -\frac{1}{2} & -\frac{\sqrt{6}-\sqrt{2}}{4} & 0 & \frac{1}{2} & \frac{\sqrt{3}}{2} & \frac{\sqrt{6}+\sqrt{2}}{4} & 1 & \frac{\sqrt{3}}{2} \\
\hline
\ang{180} & 1 & \frac{\sqrt{3}}{2} & \frac{1}{\sqrt{2}} & \frac{1}{2} & 0 & -\frac{1}{2} & -\frac{1}{\sqrt{2}} & -\frac{\sqrt{3}}{2} & -1 & -\frac{\sqrt{3}}{2} & -\frac{1}{\sqrt{2}} & -\frac{1}{2} & 0 & \frac{1}{2} & \frac{1}{\sqrt{2}} & \frac{\sqrt{3}}{2} & 1 \\
\hline
\ang{210} & \frac{\sqrt{3}}{2} & 1 & \frac{\sqrt{6}+\sqrt{2}}{4} & \frac{\sqrt{3}}{2} & \frac{1}{2} & 0 & -\frac{\sqrt{6}-\sqrt{2}}{4} & -\frac{1}{2} & -\frac{\sqrt{3}}{2} & -1 & -\frac{\sqrt{6}+\sqrt{2}}{4} & \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & \frac{\sqrt{6}-\sqrt{2}}{4} & \frac{1}{2} & \frac{\sqrt{3}}{2} \\
\hline
\ang{225} & \frac{1}{\sqrt{2}} & \frac{\sqrt{6}+\sqrt{2}}{4} & 1 & \frac{\sqrt{6}+\sqrt{2}}{4} & \frac{1}{\sqrt{2}} & \frac{\sqrt{6}-\sqrt{2}}{4} & 0 & -\frac{\sqrt{6}-\sqrt{2}}{4} & -\frac{1}{\sqrt{2}} & -\frac{\sqrt{6}+\sqrt{2}}{4} & -1 & -\frac{\sqrt{6}+\sqrt{2}}{4} & -\frac{1}{\sqrt{2}} & -\frac{\sqrt{6}-\sqrt{2}}{4} & 0 & \frac{\sqrt{6}-\sqrt{2}}{4} & \frac{1}{\sqrt{2}} \\
\hline
\ang{240} & \frac{1}{2} & \frac{\sqrt{3}}{2} & \frac{\sqrt{6}+\sqrt{2}}{4} & 1 & \frac{\sqrt{3}}{2} & \frac{1}{2} & \frac{\sqrt{6}-\sqrt{2}}{4} & 0 & -\frac{1}{2} & -\frac{\sqrt{3}}{2} & -\frac{\sqrt{6}-\sqrt{2}}{4} & -1 & -\frac{\sqrt{3}}{2} & -\frac{1}{2} & -\frac{\sqrt{6}-\sqrt{2}}{4} & 0 & \frac{1}{2} \\
\hline
\ang{270} & 0 & \frac{1}{2} & \frac{1}{\sqrt{2}} & \frac{\sqrt{3}}{2} & 1 & \frac{\sqrt{3}}{2} & \frac{1}{\sqrt{2}} & \frac{1}{2} & 0 & -\frac{1}{2} & -\frac{1}{\sqrt{2}} & -\frac{\sqrt{3}}{2} & -1 & -\frac{\sqrt{3}}{2} & -\frac{1}{\sqrt{2}} & -\frac{1}{2} & 0 \\
\hline
\ang{300} & -\frac{1}{2} & 0 & \frac{\sqrt{6}-\sqrt{2}}{4} & \frac{1}{2} & \frac{\sqrt{3}}{2} & 1 & \frac{\sqrt{6}+\sqrt{2}}{4} & \frac{\sqrt{3}}{2} & \frac{1}{2} & 0 & -\frac{\sqrt{6}-\sqrt{2}}{4} & -\frac{1}{2} & -\frac{\sqrt{3}}{2} & -1 & -\frac{\sqrt{6}+\sqrt{2}}{4} & -\frac{1}{\sqrt{2}} & -\frac{1}{2} \\
\hline
\ang{315} & -\frac{1}{\sqrt{2}} & -\frac{\sqrt{6}-\sqrt{2}}{4} & 0 & \frac{\sqrt{6}-\sqrt{2}}{4} & \frac{1}{\sqrt{2}} & \frac{\sqrt{6}+\sqrt{2}}{4} & 1 & \frac{\sqrt{6}+\sqrt{2}}{4} & \frac{1}{\sqrt{2}} & \frac{\sqrt{6}-\sqrt{2}}{4} & 0 & -\frac{\sqrt{6}-\sqrt{2}}{4} & -\frac{1}{\sqrt{2}} & -\frac{\sqrt{6}+\sqrt{2}}{4} & -1 & -\frac{\sqrt{6}+\sqrt{2}}{4} & -\frac{1}{\sqrt{2}} \\
\hline
\ang{330} & -\frac{\sqrt{3}}{2} & -\frac{1}{2} & -\frac{\sqrt{6}-\sqrt{2}}{4} & 0 & \frac{1}{2} & \frac{\sqrt{3}}{2} & \frac{\sqrt{6}+\sqrt{2}}{4} & 1 & \frac{\sqrt{3}}{2} & \frac{1}{2} & \frac{\sqrt{6}-\sqrt{2}}{4} & 0 & -\frac{1}{2} & -\frac{\sqrt{3}}{2} & -\frac{\sqrt{6}+\sqrt{2}}{4} & -1 & -\frac{\sqrt{3}}{2} \\
\hline
\ang{360} & -1 & -\frac{\sqrt{3}}{2} & -\frac{1}{\sqrt{2}} & -\frac{1}{2} & 0 & \frac{1}{2} & \frac{1}{\sqrt{2}} & \frac{\sqrt{3}}{2} & 1 & \frac{\sqrt{3}}{2} & \frac{1}{\sqrt{2}} & \frac{1}{2} & 0 & -\frac{1}{2} & -\frac{1}{\sqrt{2}} & -\frac{\sqrt{3}}{2} & -1 \\
\hline
\end{tabular}
\end{table}
\end{document}
我不确定这样的桌子有什么用处。
方形细胞:真是太可怕了!:-)
\documentclass{article}
\usepackage[a0paper]{geometry}
\usepackage{amsmath}
\usepackage{diagbox,array}
\usepackage{siunitx}
\newlength{\bigtablewd}
\begin{document}
\begin{table}
\centering
\settowidth{\bigtablewd}{$-\dfrac{\sqrt{6}+\sqrt{2}}{4}$}
\newcommand{\tablestrut}{%
\vphantom{$\left|\rule{0pt}{\dimexpr0.5\bigtablewd+\tabcolsep}\right.$}%
}
\begin{tabular}{|c|| *{17}{>{\tablestrut$\displaystyle}w{c}{\bigtablewd}<{$}|}}
\hline
\diagbox{$\theta_1$}{$\theta_2$}
& \ang{0} & \ang{30} & \ang{45} & \ang{60} & \ang{90} & \ang{120} & \ang{135} & \ang{150} & \ang{180} & \ang{210} & \ang{225} & \ang{240} & \ang{270} & \ang{300} & \ang{315} & \ang{330} & \ang{360} \\
\hline \hline
\ang{0} & -1 & -\frac{\sqrt{3}}{2} & -\frac{1}{\sqrt{2}} & \frac{1}{2} & 0 & \frac{1}{2} & \frac{1}{\sqrt{2}} & \frac{\sqrt{3}}{2} & 1 & \frac{\sqrt{3}}{2} & \frac{1}{\sqrt{2}} & \frac{1}{2} & 0 & -\frac{1}{2} & -\frac{1}{\sqrt{2}} & -\frac{\sqrt{3}}{2} & -1 \\
\hline
\ang{30} & -\frac{\sqrt{3}}{2} & -1 & -\frac{\sqrt{6}+\sqrt{2}}{4} & -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & \frac{\sqrt{6}-\sqrt{2}}{4} & \frac{1}{2} & \frac{\sqrt{3}}{2} & 1 & \frac{\sqrt{6}+\sqrt{2}}{4} & \frac{\sqrt{3}}{2} & \frac{1}{2} & 0 & -\frac{\sqrt{6}-\sqrt{2}}{4} & -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
\hline
\ang{45} & -\frac{1}{\sqrt{2}} & -\frac{\sqrt{6}+\sqrt{2}}{4} & -1 & -\frac{\sqrt{6}+\sqrt{2}}{4} & -\frac{1}{\sqrt{2}} & -\frac{\sqrt{6}-\sqrt{2}}{4} & 0 & \frac{\sqrt{6}-\sqrt{2}}{4} & \frac{1}{\sqrt{2}} & \frac{\sqrt{6}+\sqrt{2}}{4} & 1 & \frac{\sqrt{6}+\sqrt{2}}{4} & \frac{1}{\sqrt{2}} & \frac{\sqrt{6}-\sqrt{2}}{4} & 0 & -\frac{\sqrt{6}-\sqrt{2}}{4} & -\frac{1}{\sqrt{2}} \\
\hline
\ang{60} & -\frac{1}{2} & -\frac{\sqrt{3}}{2} & -\frac{\sqrt{6}+\sqrt{2}}{4} & -1 & -\frac{\sqrt{3}}{2} & -\frac{1}{2} & -\frac{\sqrt{6}-\sqrt{2}}{4} & 0 & \frac{1}{2} & \frac{\sqrt{3}}{2} & \frac{\sqrt{6}+\sqrt{2}}{4} & 1 & \frac{\sqrt{3}}{2} & \frac{1}{2} & \frac{\sqrt{6}-\sqrt{2}}{4} & 0 & -\frac{1}{2} \\
\hline
\ang{90} & 0 & -\frac{1}{2} & -\frac{1}{\sqrt{2}} & -\frac{\sqrt{3}}{2} & -1 & -\frac{\sqrt{3}}{2} & -\frac{1}{\sqrt{2}} & -\frac{1}{2} & 0 & \frac{1}{2} & \frac{1}{\sqrt{2}} & \frac{\sqrt{3}}{2} & 1 & \frac{\sqrt{3}}{2} & \frac{1}{\sqrt{2}} & \frac{1}{2} & 0 \\
\hline
\ang{120} & \frac{1}{2} & 0 & -\frac{\sqrt{6}-\sqrt{2}}{4} & -\frac{1}{2} & -\frac{\sqrt{3}}{2} & -1 & -\frac{\sqrt{6}+\sqrt{2}}{4} & -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & \frac{\sqrt{6}-\sqrt{2}}{4} & \frac{1}{2} & \frac{\sqrt{3}}{2} & 1 & \frac{\sqrt{6}+\sqrt{2}}{4} & \frac{\sqrt{3}}{2} & \frac{1}{2} \\
\hline
\ang{135} & \frac{1}{\sqrt{2}} & \frac{\sqrt{6}-\sqrt{2}}{4} & 0 & -\frac{\sqrt{6}-\sqrt{2}}{4} & -\frac{1}{\sqrt{2}} & -\frac{\sqrt{6}+\sqrt{2}}{4} & -1 & -\frac{\sqrt{6}+\sqrt{2}}{4} & -\frac{1}{\sqrt{2}} & -\frac{\sqrt{6}-\sqrt{2}}{4} & 0 & \frac{\sqrt{6}-\sqrt{2}}{4} & \frac{1}{\sqrt{2}} & \frac{\sqrt{6}+\sqrt{2}}{4} & 1 & \frac{\sqrt{6}+\sqrt{2}}{4} & \frac{1}{\sqrt{2}} \\
\hline
\ang{150} & \frac{\sqrt{3}}{2} & \frac{1}{2} & \frac{\sqrt{6}-\sqrt{2}}{4} & 0 & -\frac{1}{2} & -\frac{\sqrt{3}}{2} & -\frac{\sqrt{6}+\sqrt{2}}{4} & -1 & -\frac{\sqrt{3}}{2} & -\frac{1}{2} & -\frac{\sqrt{6}-\sqrt{2}}{4} & 0 & \frac{1}{2} & \frac{\sqrt{3}}{2} & \frac{\sqrt{6}+\sqrt{2}}{4} & 1 & \frac{\sqrt{3}}{2} \\
\hline
\ang{180} & 1 & \frac{\sqrt{3}}{2} & \frac{1}{\sqrt{2}} & \frac{1}{2} & 0 & -\frac{1}{2} & -\frac{1}{\sqrt{2}} & -\frac{\sqrt{3}}{2} & -1 & -\frac{\sqrt{3}}{2} & -\frac{1}{\sqrt{2}} & -\frac{1}{2} & 0 & \frac{1}{2} & \frac{1}{\sqrt{2}} & \frac{\sqrt{3}}{2} & 1 \\
\hline
\ang{210} & \frac{\sqrt{3}}{2} & 1 & \frac{\sqrt{6}+\sqrt{2}}{4} & \frac{\sqrt{3}}{2} & \frac{1}{2} & 0 & -\frac{\sqrt{6}-\sqrt{2}}{4} & -\frac{1}{2} & -\frac{\sqrt{3}}{2} & -1 & -\frac{\sqrt{6}+\sqrt{2}}{4} & \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & \frac{\sqrt{6}-\sqrt{2}}{4} & \frac{1}{2} & \frac{\sqrt{3}}{2} \\
\hline
\ang{225} & \frac{1}{\sqrt{2}} & \frac{\sqrt{6}+\sqrt{2}}{4} & 1 & \frac{\sqrt{6}+\sqrt{2}}{4} & \frac{1}{\sqrt{2}} & \frac{\sqrt{6}-\sqrt{2}}{4} & 0 & -\frac{\sqrt{6}-\sqrt{2}}{4} & -\frac{1}{\sqrt{2}} & -\frac{\sqrt{6}+\sqrt{2}}{4} & -1 & -\frac{\sqrt{6}+\sqrt{2}}{4} & -\frac{1}{\sqrt{2}} & -\frac{\sqrt{6}-\sqrt{2}}{4} & 0 & \frac{\sqrt{6}-\sqrt{2}}{4} & \frac{1}{\sqrt{2}} \\
\hline
\ang{240} & \frac{1}{2} & \frac{\sqrt{3}}{2} & \frac{\sqrt{6}+\sqrt{2}}{4} & 1 & \frac{\sqrt{3}}{2} & \frac{1}{2} & \frac{\sqrt{6}-\sqrt{2}}{4} & 0 & -\frac{1}{2} & -\frac{\sqrt{3}}{2} & -\frac{\sqrt{6}-\sqrt{2}}{4} & -1 & -\frac{\sqrt{3}}{2} & -\frac{1}{2} & -\frac{\sqrt{6}-\sqrt{2}}{4} & 0 & \frac{1}{2} \\
\hline
\ang{270} & 0 & \frac{1}{2} & \frac{1}{\sqrt{2}} & \frac{\sqrt{3}}{2} & 1 & \frac{\sqrt{3}}{2} & \frac{1}{\sqrt{2}} & \frac{1}{2} & 0 & -\frac{1}{2} & -\frac{1}{\sqrt{2}} & -\frac{\sqrt{3}}{2} & -1 & -\frac{\sqrt{3}}{2} & -\frac{1}{\sqrt{2}} & -\frac{1}{2} & 0 \\
\hline
\ang{300} & -\frac{1}{2} & 0 & \frac{\sqrt{6}-\sqrt{2}}{4} & \frac{1}{2} & \frac{\sqrt{3}}{2} & 1 & \frac{\sqrt{6}+\sqrt{2}}{4} & \frac{\sqrt{3}}{2} & \frac{1}{2} & 0 & -\frac{\sqrt{6}-\sqrt{2}}{4} & -\frac{1}{2} & -\frac{\sqrt{3}}{2} & -1 & -\frac{\sqrt{6}+\sqrt{2}}{4} & -\frac{1}{\sqrt{2}} & -\frac{1}{2} \\
\hline
\ang{315} & -\frac{1}{\sqrt{2}} & -\frac{\sqrt{6}-\sqrt{2}}{4} & 0 & \frac{\sqrt{6}-\sqrt{2}}{4} & \frac{1}{\sqrt{2}} & \frac{\sqrt{6}+\sqrt{2}}{4} & 1 & \frac{\sqrt{6}+\sqrt{2}}{4} & \frac{1}{\sqrt{2}} & \frac{\sqrt{6}-\sqrt{2}}{4} & 0 & -\frac{\sqrt{6}-\sqrt{2}}{4} & -\frac{1}{\sqrt{2}} & -\frac{\sqrt{6}+\sqrt{2}}{4} & -1 & -\frac{\sqrt{6}+\sqrt{2}}{4} & -\frac{1}{\sqrt{2}} \\
\hline
\ang{330} & -\frac{\sqrt{3}}{2} & -\frac{1}{2} & -\frac{\sqrt{6}-\sqrt{2}}{4} & 0 & \frac{1}{2} & \frac{\sqrt{3}}{2} & \frac{\sqrt{6}+\sqrt{2}}{4} & 1 & \frac{\sqrt{3}}{2} & \frac{1}{2} & \frac{\sqrt{6}-\sqrt{2}}{4} & 0 & -\frac{1}{2} & -\frac{\sqrt{3}}{2} & -\frac{\sqrt{6}+\sqrt{2}}{4} & -1 & -\frac{\sqrt{3}}{2} \\
\hline
\ang{360} & -1 & -\frac{\sqrt{3}}{2} & -\frac{1}{\sqrt{2}} & -\frac{1}{2} & 0 & \frac{1}{2} & \frac{1}{\sqrt{2}} & \frac{\sqrt{3}}{2} & 1 & \frac{\sqrt{3}}{2} & \frac{1}{\sqrt{2}} & \frac{1}{2} & 0 & -\frac{1}{2} & -\frac{1}{\sqrt{2}} & -\frac{\sqrt{3}}{2} & -1 \\
\hline
\end{tabular}
\end{table}
\end{document}