我TikZ
在环境右侧有一个图表minipage
。我有一些想要放在minipage
环境下方的文本。行间距大约是其他行间距的一半。
我并不坚持在minipage
这里使用。我只是想要合适的排版。
\documentclass{amsart}
\usepackage{mathtools}
\usepackage[dvipsnames]{xcolor}
\usepackage{tikz}
\usetikzlibrary{calc,intersections}
\usepackage{pgfplots}
\pgfplotsset{compat=1.11}
\setlength{\oddsidemargin}{0.0in}
\setlength{\evensidemargin}{0.0in} \setlength{\textwidth}{6.1in}
\setlength{\topmargin}{0.0in} \setlength{\textheight}{9in}
\begin{document}
\noindent \begin{minipage}[t]{4.875in}
\noindent \raggedright{\textbf{1.) }The following figure depicts three congruent semicircles bounded by another \\
semicircle; the diameters of the three smaller semicircles cover the diameter of \\
the bigger semicircle, and each of the three smaller semicircles is tangent to \\
two other semicircles at the endpoints of its diameter. \textit{A} is the area of \\
of the region enclosed by the three smaller semicircles and \textit{B} is the area}
\end{minipage}
%
\hspace{-0.25cm}
%
\raisebox{0mm}[0mm][0mm]
{
\begin{tikzpicture}[baseline=(current bounding box.north west)]
\coordinate (O) at (0,0);
\draw[fill=blue!50] (-1.5,0) -- (1.5,0) arc (0:180:1.5) -- cycle;
%
\draw[fill=yellow] (-3/2,0) -- (-1/2,0) arc (0:180:1/2) -- cycle;
\draw[fill=yellow] (-1/2,0) -- (1/2,0) arc (0:180:1/2) -- cycle;
\draw[fill=yellow] (1/2,0) -- (3/2,0) arc (0:180:1/2) -- cycle;
\draw[fill] (O) circle (1.5pt);
\end{tikzpicture}
} \\
the region enclosed by the big semicircle but outside the three smaller semicircles. Compute the ratio of $A : B$.
\end{document}
答案1
你想看看如何在使用 minipages (或 \parboxes) 时保持恒定的 baselineskip?但还有一个更好的选择:
\documentclass{amsart}
\usepackage{mathtools}
\usepackage{wrapfig}
\usepackage[dvipsnames]{xcolor}
\usepackage{tikz}
\usetikzlibrary{calc,intersections}
\usepackage{pgfplots}
\pgfplotsset{compat=1.11}
\setlength{\oddsidemargin}{0.0in}
\setlength{\evensidemargin}{0.0in} \setlength{\textwidth}{6.1in}
\setlength{\topmargin}{0.0in} \setlength{\textheight}{9in}
\begin{document}
\noindent
\begin{minipage}[t]{4.875in}\raggedright
\textbf{1.)} The following figure depicts three congruent semicircles
bounded by another semicircle; the diameters of the three smaller
semicircles cover the diameter of the bigger semicircle, and each of
the three smaller semicircles is tangent to two other semicircles at
the endpoints of its diameter. $A$ is the area of of the region
enclosed by the three smaller semicircles and $B$ is the area\par
\xdef\tpd{\the\prevdepth}
\end{minipage}\hfill
\raisebox{0mm}[0mm][0mm]{%
\begin{tikzpicture}[baseline=(current bounding box.north west)]
\coordinate (O) at (0,0);
\draw[fill=blue!50] (-1.5,0) -- (1.5,0) arc (0:180:1.5) -- cycle;
%
\draw[fill=yellow] (-3/2,0) -- (-1/2,0) arc (0:180:1/2) -- cycle;
\draw[fill=yellow] (-1/2,0) -- (1/2,0) arc (0:180:1/2) -- cycle;
\draw[fill=yellow] (1/2,0) -- (3/2,0) arc (0:180:1/2) -- cycle;
\draw[fill] (O) circle (1.5pt);
\end{tikzpicture}
}
\prevdepth=\tpd
\noindent
the region enclosed by the big semicircle but outside the three smaller
semicircles. Compute the ratio of $A : B$.
\bigskip
\begin{wrapfigure}[4]{r}{3.2cm}
\vspace{-\baselineskip}
\begin{tikzpicture}[baseline=(current bounding box.south west)]
\coordinate (O) at (0,0);
\draw[fill=blue!50] (-1.5,0) -- (1.5,0) arc (0:180:1.5) -- cycle;
%
\draw[fill=yellow] (-3/2,0) -- (-1/2,0) arc (0:180:1/2) -- cycle;
\draw[fill=yellow] (-1/2,0) -- (1/2,0) arc (0:180:1/2) -- cycle;
\draw[fill=yellow] (1/2,0) -- (3/2,0) arc (0:180:1/2) -- cycle;
\draw[fill] (O) circle (1.5pt);
\end{tikzpicture}
\end{wrapfigure}
\noindent
\textbf{1.)} The following figure depicts three congruent semicircles
bounded by another semicircle; the diameters of the three smaller
semicircles cover the diameter of the bigger semicircle, and each of
the three smaller semicircles is tangent to two other semicircles at
the endpoints of its diameter. $A$ is the area of of the region
enclosed by the three smaller semicircles and $B$ is the area
the region enclosed by the big semicircle but outside the three smaller
semicircles. Compute the ratio of $A : B$.
\end{document}
答案2
我不太清楚你想获得什么。看看我的猜测是否接近你的目标:
对于上述结果我使用以下wrapfig
包:
\documentclass[dvipsname]{amsart}
\usepackage{tikz}
\usetikzlibrary{calc, intersections}
\usepackage{wrapfig}
\begin{document}
\begin{wrapfigure}{r}{0.25\textwidth}
\begin{tikzpicture}
\draw[fill=blue!50] (-1.5,0) -- (1.5,0) arc (0:180:1.5) -- cycle;
%
\draw[fill=yellow] (-3/2,0) -- (-1/2,0) arc (0:180:1/2) -- cycle;
\draw[fill=yellow] (-1/2,0) -- (1/2,0) arc (0:180:1/2) -- cycle;
\draw[fill=yellow] (1/2,0) -- (3/2,0) arc (0:180:1/2) -- cycle;
\draw[fill] (0,0) circle (1.5pt);
\end{tikzpicture}
\end{wrapfigure}
\noindent\textbf{1.)}
The following figure depicts three congruent semicircles bounded by another
semicircle; the diameters of the three smaller semicircles cover the diameter
of the bigger semicircle, and each of the three smaller semicircles is tangent
to two other semicircles at the endpoints of its diameter. $A$ is the area of
of the region enclosed by the three smaller semicircles and $B} is the area
the region enclosed by the big semicircle but outside the three smaller
semicircles. Compute the ratio of $A : B$.
\end{document}