箭头,图表.sty(Paul Taylor)

箭头,图表.sty(Paul Taylor)

我的代码如下:

\documentclass[]{book}

\usepackage[silent,nohug,heads=LaTeX,midshaft]{diagrams}

\newarrow{Dashto}{}{dash}{}{dash}>
\newcommand{\undera}{\underline{a}}
\newcommand{\Spec}{\mathop{\mathrm{Spec}}}

\begin{document}

By the Chain Lemma (2),
the function field of $S(\root{\ell}\of \gamma)$ splits $\undera$.
If $X$ is a norm variety for $\undera$,
there is a finite field extension
$F'$ of $k(S(\root{\ell}\of \gamma))$ of degree prime to $\ell$
and an $F'$-point $\Spec(F')\to X$. Forming $\tilde{S}$ as in
Lemma~3, this $F'$-point extends to a rational map
$\phi:\tilde{S}(\root{\ell}\of \gamma)\rDashto^{}X$.

Recall that the cyclic group $C_\ell=\langle\sigma\rangle$ acts on
$X^\ell$ by $\sigma(x_1,...,x_\ell)=(x_2,...,x_\ell,\break x_1)$, and that
$C^\ell X$ denotes the geometric quotient variety $X^\ell/C_\ell$.
Let $\sigma$ be a generator of $C_\ell$, 
and let $\phi:\tilde{S}(\root{\ell}\of \gamma)\rDashto^{}X$
be the rational map mentioned above. 
Choosing an isomorphism $C_\ell\cong\mu_\ell$, the rational maps
$\phi\sigma^i$ assemble to form a $C_\ell$-equivariant rational map
$g=(\phi,\phi\sigma,...,\phi\sigma^{\ell-1})$
from $\tilde{S}(\root{\ell}\of \gamma)$ to $X^\ell$.

\end{document}

我在两个地方使用了标签\rDashto,但其中一个地方带有两个破折号,另一个地方带有三个破折号,请参考标记的示例以更清楚地理解。我需要修复所有地方的三个破折号。如何修复?建议...

在此处输入图片描述

答案1

diagrams.sty包难以定制,并且其代码被混淆,因此很难改变其输出。

我可以建议你改用tikz-cd

\documentclass[]{book}
\usepackage{amsmath}
\usepackage{tikz-cd}

\newcommand{\undera}{\underline{a}}
\DeclareMathOperator{\Spec}{Spec}

\newcommand{\ratmap}[3]{%
  \begin{tikzcd}[
    arrow style=tikz,
    >=LaTeX,
    ampersand replacement=\&,
    sep=scriptsize,
    cramped,
  ]
  #1\colon #2 \arrow[r,dashed] \& #3
  \end{tikzcd}%
}

\begin{document}

By the Chain Lemma (2),
the function field of $S(\sqrt[\ell]{\gamma})$ splits $\undera$.
If $X$ is a norm variety for $\undera$,
there is a finite field extension
$F'$ of $k(S(\sqrt[\ell]{\gamma}))$ of degree prime to $\ell$
and an $F'$-point $\Spec(F')\to X$. Forming $\tilde{S}$ as in
Lemma~3, this $F'$-point extends to a rational map
\ratmap{\phi}{\tilde{S}}{X}.

Recall that the cyclic group $C_\ell=\langle\sigma\rangle$ acts on
$X^\ell$ by $\sigma(x_1,\dots,x_\ell)=(x_2,\dots,\allowbreak x_\ell, x_1)$,
and that $C^\ell X$ denotes the geometric quotient variety $X^\ell/C_\ell$.
Let $\sigma$ be a generator of $C_\ell$, 
and let \ratmap{\phi}{\tilde{S}}{X}
be the rational map mentioned above. 
Choosing an isomorphism $C_\ell\cong\mu_\ell$, the rational maps
$\phi\sigma^i$ assemble to form a $C_\ell$-equivariant rational map
$g=(\phi,\phi\sigma,\dots,\phi\sigma^{\ell-1})$
from $\tilde{S}(\sqrt[\ell]{\gamma})$ to $X^\ell$.

\end{document}

在此处输入图片描述

需要注意的事项:

  1. 我全部...改为\dots
  2. \root\ell\of\gamma是外来语法,正确的 LaTeX 语法是\sqrt[\ell]{\gamma}
  3. 最好用于\colon地图,而不是:

相关内容