我正在尝试使用计算机代数系统来学习一些关于代数表达式的知识,这是它在 LaTex 中给出的结果:
\documentclass{article}
\usepackage{breqn}
\begin{document}
\begin{dmath}
\frac{e_{0} n_{0} \left(- n_{0} p_{0} + n_{0} r_{0} + n_{0} \left(p_{0} - q_{0}\right) - n_{1} p_{1} + n_{1} r_{1} + n_{1} \left(p_{1} - q_{1}\right) - n_{2} p_{2} + n_{2} r_{2} + n_{2} \left(p_{2} - q_{2}\right)\right) + e_{1} n_{1} \left(- n_{0} p_{0} + n_{0} r_{0} + n_{0} \left(p_{0} - q_{0}\right) - n_{1} p_{1} + n_{1} r_{1} + n_{1} \left(p_{1} - q_{1}\right) - n_{2} p_{2} + n_{2} r_{2} + n_{2} \left(p_{2} - q_{2}\right)\right) - e_{10} \left(\left(- p_{1} + r_{1}\right) \left(n_{0} \left(p_{0} - q_{0}\right) + n_{1} \left(p_{1} - q_{1}\right) + n_{2} \left(p_{2} - q_{2}\right)\right) + \left(p_{1} - q_{1}\right) \left(n_{0} p_{0} - n_{0} r_{0} + n_{1} p_{1} - n_{1} r_{1} + n_{2} p_{2} - n_{2} r_{2}\right)\right) - e_{11} \left(\left(- p_{2} + r_{2}\right) \left(n_{0} \left(p_{0} - q_{0}\right) + n_{1} \left(p_{1} - q_{1}\right) + n_{2} \left(p_{2} - q_{2}\right)\right) + \left(p_{2} - q_{2}\right) \left(n_{0} p_{0} - n_{0} r_{0} + n_{1} p_{1} - n_{1} r_{1} + n_{2} p_{2} - n_{2} r_{2}\right)\right) + e_{2} n_{2} \left(- n_{0} p_{0} + n_{0} r_{0} + n_{0} \left(p_{0} - q_{0}\right) - n_{1} p_{1} + n_{1} r_{1} + n_{1} \left(p_{1} - q_{1}\right) - n_{2} p_{2} + n_{2} r_{2} + n_{2} \left(p_{2} - q_{2}\right)\right) - e_{9} \left(\left(- p_{0} + r_{0}\right) \left(n_{0} \left(p_{0} - q_{0}\right) + n_{1} \left(p_{1} - q_{1}\right) + n_{2} \left(p_{2} - q_{2}\right)\right) + \left(p_{0} - q_{0}\right) \left(n_{0} p_{0} - n_{0} r_{0} + n_{1} p_{1} - n_{1} r_{1} + n_{2} p_{2} - n_{2} r_{2}\right)\right) + \left(e_{3} n_{0} + e_{4} n_{1} + e_{5} n_{2}\right) \left(n_{0} p_{0} - n_{0} r_{0} + n_{1} p_{1} - n_{1} r_{1} + n_{2} p_{2} - n_{2} r_{2}\right) - \left(e_{6} n_{0} + e_{7} n_{1} + e_{8} n_{2}\right) \left(n_{0} \left(p_{0} - q_{0}\right) + n_{1} \left(p_{1} - q_{1}\right) + n_{2} \left(p_{2} - q_{2}\right)\right)}{\left(n_{0} \left(p_{0} - q_{0}\right) + n_{1} \left(p_{1} - q_{1}\right) + n_{2} \left(p_{2} - q_{2}\right)\right)^{2}}
\end{dmath}
\end{document}
这是一个很大的部分,当我尝试将其编译为 PDF 时,它被截断了:
在 LaTex 中是否有一种自动方法可以将这个分数拆分成多行?如果您查看 LaTex 源代码,就会发现在此类表达式中手动搜索合理的断点并不容易。
编辑:分数如下所示:
几乎看不出来,但分母只有一个,分子却很大。有没有办法自动将分子写在多行上?
答案1
恐怕不是自动的。首先,不要使用\left
和\right
调整大小指令:它们不仅不能成功地扩大任何括号,它们还会阻止 TeX 在左右对的范围内插入换行符。其次,使用指令\parbox
,并在内联数学模式(无\frac
术语)在 内\parbox
。为什么要使用内联数学模式?因为 TeX 允许内联数学材料换行(只要没有\left
-\right
干扰)。
要设置分子和分母项的开始和结束,请使用花括号。
(可选)使用方括号 --[
和 和]
-- 代替“外部”圆括号。
话虽如此,我不确定您的读者应该从以下表达中得到什么——更不用说记住三秒钟以上了……
\documentclass{article}
\begin{document}
\[
\parbox{0.8\textwidth}{$\bigl\{
e_0 n_0 [- n_0 (p_0 - r_0) + n_0 (p_0 - q_0)
- n_1 (p_1 - r_1) + n_1 (p_1 - q_1)
- n_2 (p_2 - r_2) + n_2 (p_2 - q_2)]
+ e_1 n_1 [- n_0 (p_0 - r_0) + n_0 (p_0 - q_0)
- n_1 (p_1 - r_1) + n_1 (p_1 - q_1)
- n_2 (p_2 - r_2) + n_2 (p_2 - q_2)]
- e_{10} [(- p_1 + r_1) [n_0 (p_0 - q_0) + n_1 (p_1 - q_1) + n_2 (p_2 - q_2)]
+ (p_1 - q_1) [n_0 (p_0 - r_0) + n_1 (p_1 - r_1) + n_2 (p_2 - r_2)]]
- e_{11} [(- p_2 + r_2) [n_0 (p_0 - q_0) + n_1 (p_1 - q_1) + n_2 (p_2 - q_2)]
+ (p_2 - q_2) [n_0 (p_0 - r_0) + n_1 (p_1 - r_1) + n_2 (p_2 - r_2)]]
+ e_2 n_2 [- n_0 (p_0 - r_0) + n_0 (p_0 - q_0)
- n_1 (p_1 - r_1) + n_1 (p_1 - q_1)
- n_2 (p_2 - r_2) + n_2 (p_2 - q_2)]
- e_9 [(- p_0 + r_0) [n_0 (p_0 - q_0) + n_1 (p_1 - q_1) + n_2 (p_2 - q_2)]
+ (p_0 - q_0) [n_0 (p_0 - r_0) + n_1 (p_1 - r_1) + n_2 (p_2 - r_2)]]
+ [e_3 n_0 + e_4 n_1 + e_5 n_2] [n_0 (p_0 - r_0) + n_1 (p_1 - r_1) + n_2 (p_2 - r_2)]
- [e_6 n_0 + e_7 n_1 + e_8 n_2] [n_0 (p_0 - q_0) + n_1 (p_1 - q_1) + n_2 (p_2 - q_2)]
\bigr\}\big/\bigl\{
n_0 (p_0 - q_0) + n_1 (p_1 - q_1) + n_2 (p_2 - q_2)
\bigr\}^2 $}
\]
\end{document}
答案2
不是自动的。我删除了长表达式周围的\left
和\right
,只保留了差异p i – q i和类似的。
\documentclass{article}
\usepackage{amsmath}
\begin{document}
\begin{equation}
\begin{gathered}
\frac{
\;
\parbox{0.8\displaywidth}{\raggedright\leftskip=1em\hspace{-1em}$
e_{0} n_{0} (- n_{0} p_{0} + n_{0} r_{0} + n_{0}
\left(p_{0} - q_{0}\right) - n_{1} p_{1} + n_{1} r_{1} + n_{1}
\left(p_{1} - q_{1}\right) - n_{2} p_{2} + n_{2} r_{2} + n_{2}
\left(p_{2} - q_{2}\right)) + e_{1} n_{1}
(- n_{0} p_{0} + n_{0} r_{0} + n_{0} \left(p_{0} - q_{0}\right)
- n_{1} p_{1} + n_{1} r_{1} + n_{1} \left(p_{1} - q_{1}\right) -
n_{2} p_{2} + n_{2} r_{2} + n_{2} \left(p_{2} - q_{2}\right))
- e_{10} (\left(- p_{1} + r_{1}\right)
(n_{0} \left(p_{0} - q_{0}\right) + n_{1} \left(p_{1} - q_{1}\right)
+ n_{2} \left(p_{2} - q_{2}\right)) + \left(p_{1} - q_{1}\right)
(n_{0} p_{0} - n_{0} r_{0} + n_{1} p_{1} - n_{1} r_{1} +
n_{2} p_{2} - n_{2} r_{2}))
- e_{11} (\left(- p_{2} + r_{2}\right)
(n_{0} \left(p_{0} - q_{0}\right) + n_{1} \left(p_{1} - q_{1}\right)
+ n_{2} \left(p_{2} - q_{2}\right)) + \left(p_{2} - q_{2}\right)
(n_{0} p_{0} - n_{0} r_{0} + n_{1} p_{1} - n_{1} r_{1} +
n_{2} p_{2} - n_{2} r_{2})) + e_{2} n_{2}
(- n_{0} p_{0} + n_{0} r_{0} + n_{0} \left(p_{0} - q_{0}\right)
- n_{1} p_{1} + n_{1} r_{1} + n_{1} \left(p_{1} - q_{1}\right)
- n_{2} p_{2} + n_{2} r_{2} + n_{2} \left(p_{2} - q_{2}\right))
- e_{9} (\left(- p_{0} + r_{0}\right)
(n_{0} \left(p_{0} - q_{0}\right) + n_{1} \left(p_{1} - q_{1}\right)
+ n_{2} \left(p_{2} - q_{2}\right))
+ \left(p_{0} - q_{0}\right) (n_{0} p_{0}
- n_{0} r_{0} + n_{1} p_{1} - n_{1} r_{1} + n_{2} p_{2}
- n_{2} r_{2})) + (e_{3} n_{0} + e_{4} n_{1}
+ e_{5} n_{2}) (n_{0} p_{0} - n_{0} r_{0}
+ n_{1} p_{1} - n_{1} r_{1} + n_{2} p_{2} - n_{2} r_{2})
- (e_{6} n_{0} + e_{7} n_{1} + e_{8} n_{2})
(n_{0} \left(p_{0} - q_{0}\right) + n_{1}
\left(p_{1} - q_{1}\right) + n_{2} \left(p_{2} - q_{2}\right))
$}\;
}{
(n_{0} (p_{0} - q_{0}) + n_{1} (p_{1} - q_{1}) + n_{2} (p_{2} - q_{2}))^{2}
}
\end{gathered}
\end{equation}
\end{document}