当我运行以下 LaTeX 代码时出现错误

当我运行以下 LaTeX 代码时出现错误

以下代码给出错误消息:

\documentclass[energies,article,accept,moreauthors,pdftex,10pt,a4paper]{mdpi}
\usepackage{booktabs}
\usepackage{array} \newcommand{\PreserveBackslash}[1]{\let\temp=\\#1\let\\=\temp}
\newcolumntype{C}[1]{>{\PreserveBackslash\centering}m{#1}}
\newcolumntype{R}[1]{>{\PreserveBackslash\raggedleft}m{#1}}
\newcolumntype{L}[1]{>{\PreserveBackslash\raggedright}m{#1}}
\usepackage{booktabs}
\usepackage{multirow}
\begin{document}
\begin{algorithm}[H]
    \caption{EDE.}
    \label{pseudoEDE}

         Parameters initialization ${Max.iter,CR, POP, and h}$\;
        Population generation using Equation (\ref{eq:7}) \;
        \For {h = 1:H}
         {
         Compute mutant vector using Equation (\ref{eq:8})\;
        \For{iter= 1:Max.iter}
        { Compute first trial vector with CR 0.3\;
        \If {$rand() \leq 0.3$}
         {$\mu_{j}=\upsilon_{j}$\\
         else\\
        {$\mu_{j}=x_{j}$}
    }


         Compute second trial vector with CR 0.6\;
        \If {$rand() \leq 0.6$}
        { $\mu_{j}=\upsilon_{j}$\\
        else\\
        { $\mu_{j}=x_{j}$ }
    }

        Compute third trial vector with CR 0.9\;
        \If {$rand() \leq 0.9$}
        {$\mu_{j}=\upsilon_{j}$\\
        else\\
        {$\mu_{j}=x_{j}$}
    }

        Create $4^{th}$ and $5^{th}$ trial vector using Equations (\ref{4_trial}) and (\ref{5_trial})\;
        Findout trial vector which is best \;
        $X_{new} \gets$ best of $ \mu_{j}$ \;
        Compare trial vector with target vector\;
        \If {$f({X_{new}}) < f (X_{j})$}
        {$X_{j} = X_{new}$}
    }
}
\end{algorithm}

\begin{algorithm}[H]
    \caption{GWO.}
    \label{pseudoGWO}
    Parameters initialization ${Maxiter, POP, D, \alpha, \beta, \delta}$\;
    Initial population of gray wolves generation $X{i} (i=1,2,...,n)$\;
    $X(i,j)= rand (POP, D)$\;
    \While {iter $<$ Maxiter}
    {
        \For{i=1:POP}
        {
            Compute fitness using Equation (\ref{eq:17})\;
            \If {fitness $ < \alpha_{score} $ }
            {$\alpha_{score}$=fitness\;
                $\alpha_{Pos}$= $X(i, :)$\;}
            \If {fitness $ > \alpha_{score}$ and fitness$<\beta_{score }$}
            {$\beta_{score}$=fitness\;
                $\beta_{Pos}$= $X(i, :)$\;}
            \If {fitness $ > \alpha_{score}$ and fitness$>\beta_{score }$ and fitness$<\delta_{score }$}
            {$\delta_{score}$=fitness\;
                $\delta_{Pos}$= $X(i, :)$\;}
        }
        \For {i = 1:POP}
        {\For {j = 1:D}
            { Create $r1$ and $r2$ randomly with rand command\;
                Compute fitness coefficients A and C using Equations (\ref{eq:ENP3}) and (\ref{eq:ENP4})\;
                Update values of ${\alpha, \beta$, and $\delta}$ using Equation (\ref{H5})--(\ref{H7})\;
            }
        }
    }   
\end{algorithm}\par
\vspace{12pt}
\end{document} 

答案1

您给出的代码中存在一些问题:

  1. 您需要调用以下包

    \usepackage{algorithm2e} % <============================================
    \usepackage{pseudocode} % <=============================================
    
  2. 我曾经blindtext在文档中添加过一些虚拟文本。
  3. 我添加了一些课堂所需的缺失信息mdpi
  4. 我纠正了$一些

    Update values of $\alpha$, $\beta$, and $\delta$ using Equation (\ref{H5})--(\ref{H7})\;
    

使用以下完整的 MWE

\documentclass[energies,article,accept,moreauthors,pdftex,10pt,a4paper]{mdpi}

%\usepackage{booktabs}
%\usepackage{array} 
\usepackage{algorithm2e} % <============================================
\usepackage{pseudocode} % <=============================================
\usepackage{blindtext} % <======================= dummy text in document
%\newcommand{\PreserveBackslash}[1]{\let\temp=\\#1\let\\=\temp}
%\newcolumntype{C}[1]{>{\PreserveBackslash\centering}m{#1}}
%\newcolumntype{R}[1]{>{\PreserveBackslash\raggedleft}m{#1}}
%\newcolumntype{L}[1]{>{\PreserveBackslash\raggedright}m{#1}}
%
%\usepackage{multirow}

\Title{Title}
\newcommand{\orcidauthorA}{0000-0000-000-000X}
\Author{Firstname Lastname $^{1,\dagger,\ddagger}$\orcidA{}, Firstname Lastname $^{1,\ddagger}$ and Firstname Lastname $^{2,}$*}

% Authors, for metadata in PDF
\AuthorNames{Firstname Lastname, Firstname Lastname and Firstname Lastname}

% Affiliations / Addresses (Add [1] after \address if there is only one affiliation.)
\address{%
$^{1}$ \quad Affiliation 1; [email protected]\\
$^{2}$ \quad Affiliation 2; [email protected]}

\pubvolume{xx}
\issuenum{1}
\articlenumber{5}
\pubyear{2019}
\copyrightyear{2019}
\history{Received: date; Accepted: date; Published: date}



\begin{document}
\blindtext
\begin{algorithm}%[H]
    \caption{EDE.}
    \label{pseudoEDE}

         Parameters initialization ${Max.iter,CR, POP, and h}$\;
        Population generation using Equation (\ref{eq:7}) \;
        \For {h = 1:H}
         {
         Compute mutant vector using Equation (\ref{eq:8})\;
        \For{iter= 1:Max.iter}
        { Compute first trial vector with CR 0.3\;
        \If {$rand() \leq 0.3$}
         {$\mu_{j}=\upsilon_{j}$\\
         else\\
        {$\mu_{j}=x_{j}$}
    }


         Compute second trial vector with CR 0.6\;
        \If {$rand() \leq 0.6$}
        { $\mu_{j}=\upsilon_{j}$\\
        else\\
        { $\mu_{j}=x_{j}$ }
    }

        Compute third trial vector with CR 0.9\;
        \If {$rand() \leq 0.9$}
        {$\mu_{j}=\upsilon_{j}$\\
        else\\
        {$\mu_{j}=x_{j}$}
    }

        Create $4^{th}$ and $5^{th}$ trial vector using Equations (\ref{4_trial}) and (\ref{5_trial})\;
        Findout trial vector which is best \;
        $X_{new} \gets$ best of $ \mu_{j}$ \;
        Compare trial vector with target vector\;
        \If {$f({X_{new}}) < f (X_{j})$}
        {$X_{j} = X_{new}$}
    }
}
\end{algorithm}
\blindtext
\begin{algorithm}%[H]
  \caption{GWO.}
  \label{pseudoGWO}
  Parameters initialization ${Maxiter, POP, D, \alpha, \beta, \delta}$\;
  Initial population of gray wolves generation $X{i} (i=1,2,...,n)$\;
  $X(i,j)= rand (POP, D)$\;
  \While {iter $<$ Maxiter}
  {
    \For{i=1:POP}
    {
      Compute fitness using Equation (\ref{eq:17})\;
      \If {fitness $ < \alpha_{score} $ }
        {$\alpha_{score}$=fitness\;
         $\alpha_{Pos}$= $X(i, :)$\;}
      \If {fitness $ > \alpha_{score}$ and fitness$<\beta_{score }$}
        {$\beta_{score}$=fitness\;
         $\beta_{Pos}$= $X(i, :)$\;}
      \If {fitness $ > \alpha_{score}$ and fitness$>\beta_{score }$ and fitness$<\delta_{score }$}
        {$\delta_{score}$=fitness\;
         $\delta_{Pos}$= $X(i, :)$\;}
    }
    \For {i = 1:POP}
      {\For {j = 1:D}
        { Create $r1$ and $r2$ randomly with rand command\;
          Compute fitness coefficients A and C using Equations (\ref{eq:ENP3}) and (\ref{eq:ENP4})\;
          Update values of $\alpha$, $\beta$, and $\delta$ using Equation (\ref{H5})--(\ref{H7})\;
        }
     }
  }
\end{algorithm}
\blindtext
\end{document}

我只能通过一个错误进行编译(我没有该类所需的图像):

第一页

第二页

第二页

相关内容