编辑

编辑

我一直在使用抽认卡,通过“抽认卡”包Alexander Budge 的。通常我会在卡片纸上打印,但有时这可能会很不方便,例如大多数家庭办公室双面打印机无法在卡片纸上进行双面打印。除了使卡片更容易洗牌和操作外,卡片纸通常很有用,因为从正面看不到每张卡片背面的文字。

我想尝试在普通打印纸上打印抽认卡,但每面都印上某种图案,使卡片背面的内容更难看清。这类似于“安全信封”内的交叉阴影图案。

同时,我希望背景图案避开每张卡片上的文字,以便文字从正面清晰可见。我正在考虑类似最后一个例子这个强调教程

我想知道是否有人这样做过,或者有兴趣编写一个示例,以便我可以将其添加到\input我的抽认卡文档的顶部。

答案1

我建议使用backgroundtikz包,来自tik如果你不喜欢现有的

编辑

用于colorbox从文本中删除模式:

再次原创

这里我窃取了抽认卡文档中给出的示例,并插入了背景:

\documentclass[avery5388,grid,frame]{flashcards}

\cardfrontstyle[\large\slshape]{headings}
\cardbackstyle{empty}

%The notable stuff starts here
\usepackage{tikz}
\usepackage{background}
\usetikzlibrary{patterns}
\backgroundsetup{%
  opacity=.2,    %% Play with this to increase/decrease readability
  contents={\begin{tikzpicture}[remember picture,overlay]
          \fill[pattern = crosshatch] (-50,-50) rectangle (50,50);    %% yshift and xshift for example only
    \end{tikzpicture}}
}
%%%%%%      And ends here


\begin{document}

\cardfrontfoot{Functional Analysis}

\begin{flashcard}[Definition]{\colorbox{white}{Norm on a Linear Space} \\ \colorbox{white}{Normed Space} }

    A real-valued function $||x||$ defined on a linear space $X$, where15$x \in X$, is said to be a \emph{norm on} $X$ if
\smallskip
\begin{description}
\item [Positivity]            $||x|| \geq 0$,
\item [Triangle Inequality]   $||x+y|| \leq ||x|| + ||y||$,
\item [Homogeneity]           $||\alpha x|| = |\alpha| \:  ||x||$,
$\alpha$ an arbitrary scalar,
\item [Positive Definiteness] $||x|| = 0$ if and only if $x=0$,
\end{description}
\smallskip
$x$ and $y$ are arbitrary points in $X$.
\medskip
linear/vector space with a norm is called a \emph{normed space}.
\end{flashcard}

\begin{flashcard}[Definition]{Inner Product}
$X$ be a complex linear space. An \emph{inner product} on $X$ is
a mapping that associates to each pair of vectors $x$, $y$ a scalar,
denoted $(x,y)$, that satisfies the following properties:
\medskip
\begin{description}
\item [Additivity]            $(x+y,z) = (x,z) + (y,z)$,
\item [Homogeneity]           $(\alpha \: x, y) = \alpha (x,y)$,
\item [Symmetry]              $(x,y) = \overline{(y,x)}$,
\item [Positive Definiteness] $(x,x) > 0$, when $x\neq0$.
\end{description}
\end{flashcard}

\begin{flashcard}[Definition]{Linear Transformation/Operator}
    Atransformation $L$ of (operator on) a linear space $X$ into a linear
    space $Y$, where $X$ and $Y$ have the same scalar field, is said to be
    a \emph{linear transformation (operator)} if
    \medskip
    \begin{enumerate}
        \item $L(\alpha x) = \alpha L(x), \forall x\in X$ and $\forall$
            scalars $\alpha$, and
        \item $L(x_1 + x_2) = L(x_1) + L(x_2)$ for all $x_1,x_2 \in X$.5
\end{enumerate}
\end{flashcard}
\end{document}

得出的结果为:

编辑

如果你真的想要一个莫里图案,这应该可以,但请注意,图案不会在所有卡片上都相同。这确实需要在文本上放置白色方框。你可以更改圆圈的密度和位置来更改图案

\backgroundsetup{%
  color =black,  % play around
  contents={\begin{tikzpicture}[remember picture,overlay]
          \foreach \i in {1.5,2,...,30}
      {
      \draw (8,8) circle (\i);
      \draw (8,-8) circle (\i);
      \draw (-8,8) circle (\i);
      \draw (-8,-8) circle (\i);
  }
    \end{tikzpicture}}
}

编辑2

现在,一个基于椭圆的图案已移除卡片外部的墨水图案!并且所有卡片上的图案或多或少都相同 ;-)


\backgroundsetup{%
  color =black,  % play around
  contents={\begin{tikzpicture}[remember picture,overlay]
          \foreach \i in {10.1,10.2,...,150}
      {
      \draw (50,-50)  ellipse ({\i}  and 200);
      \draw (-50,-50) ellipse ({\i}  and 200);
  }
  \fill[white] (-20,-20) rectangle (-6.5,20);
  \fill[white] (20,-20) rectangle (6.5,20);
  \fill[white] (-20,20) rectangle (20,11.2);
  \fill[white] (-20,-20) rectangle (20,-12);
    \end{tikzpicture}}
}
}

在此处输入图片描述 您还可以做各种有趣的事情,移动椭圆,使它们不垂直对齐,从而使图案倾斜!特写!

我仍然强烈建议将实际文本白盒化

在此处输入图片描述

编辑

这是带有灰色图案和轮廓文本的

通过使用包\contour{color}中的contour

在此处输入图片描述

\documentclass[avery5388,grid,frame]{flashcards}

\cardfrontstyle[\large\slshape]{headings}
\cardbackstyle{empty}

\usepackage{tikz}
\usepackage{background}
\usepackage[outline]{contour}
\usetikzlibrary{patterns,calc}

\backgroundsetup{%
  scale=1,       %% these might be important
  angle=0,       %% these might be important
  opacity=1.,    %% these might be important
  color =black,  %% these might be important
  contents={\begin{tikzpicture}[remember picture,overlay]
          \foreach \i in {10.1,10.2,...,150}
      {
    %  \draw (8,8) circle (\i);
    %  \draw (8,-8) circle (\i);
    %  \draw (-8,8) circle (\i);
    %  \draw (-8,-8) circle (\i);
    \draw[thick,opacity=0.2] (50,-50)  ellipse ({\i}  and 200);
    \draw[thick,opacity=0.2] (-50,-50) ellipse ({\i}  and 200);
  }
  \fill[white] (-20,-20) rectangle (-6.5,20);
  \fill[white] (20,-20) rectangle (6.5,20);
  \fill[white] (-20,20) rectangle (20,11.2);
  \fill[white] (-20,-20) rectangle (20,-12);
    \end{tikzpicture}}
}

\begin{document}

\cardfrontfoot{Functional Analysis}

\begin{flashcard}[Definition]{\colorbox{white}{Norm on a Linear Space} \\ \contour{black}{\textcolor{white}{Normed Space $mathcheck$} }}
    A real-valued function $||x||$ defined on a linear space $X$, where15$x \in X$, is said to be a \emph{norm on} $X$ if
\smallskip
\begin{description}
\item [Positivity]            $||x|| \geq 0$,
\item [Triangle Inequality]   $||x+y|| \leq ||x|| + ||y||$,
\item [Homogeneity]           $||\alpha x|| = |\alpha| \:  ||x||$,
$\alpha$ an arbitrary scalar,
\item [Positive Definiteness] $||x|| = 0$ if and only if $x=0$,
\end{description}
\smallskip
$x$ and $y$ are arbitrary points in $X$.
\medskip
linear/vector space with a norm is called a \emph{normed space}.
\end{flashcard}

\begin{flashcard}[Definition]{Inner Product}
$X$ be a complex linear space. An \emph{inner product} on $X$ is
a mapping that associates to each pair of vectors $x$, $y$ a scalar,
denoted $(x,y)$, that satisfies the following properties:
\medskip
\begin{description}
\item [Additivity]            $(x+y,z) = (x,z) + (y,z)$,
\item [Homogeneity]           $(\alpha \: x, y) = \alpha (x,y)$,
\item [Symmetry]              $(x,y) = \overline{(y,x)}$,
\item [Positive Definiteness] $(x,x) > 0$, when $x\neq0$.
\end{description}
\end{flashcard}

\begin{flashcard}[Definition]{Linear Transformation/Operator}
    Atransformation $L$ of (operator on) a linear space $X$ into a linear
    space $Y$, where $X$ and $Y$ have the same scalar field, is said to be
    a \emph{linear transformation (operator)} if
    \medskip
    \begin{enumerate}
        \item $L(\alpha x) = \alpha L(x), \forall x\in X$ and $\forall$
            scalars $\alpha$, and
        \item $L(x_1 + x_2) = L(x_1) + L(x_2)$ for all $x_1,x_2 \in X$.5
\end{enumerate}
\end{flashcard}
\end{document}

我认为你要问的是这个: 在此处输入图片描述 请注意,您需要\contour{black}{\color{white} text here}围绕所有文本。

\documentclass[avery5388,grid,frame]{flashcards}

\cardfrontstyle[\large\slshape]{headings}
\cardbackstyle{empty}

\usepackage{tikz}
\usepackage{background}
\usepackage[outline]{contour}
\usetikzlibrary{patterns,calc}

\backgroundsetup{%
  scale=1,       %% these might be important
  angle=0,       %% these might be important
  opacity=1.,    %% these might be important
  color =black,  %% these might be important
  contents={\begin{tikzpicture}[remember picture,overlay]

          \fill[opacity=0.2,pattern=crosshatch] (-50,-50) rectangle (50,50);
  \fill[white] (-20,-20) rectangle (-6.5,20);
  \fill[white] (20,-20) rectangle (6.5,20);
  \fill[white] (-20,20) rectangle (20,11.2);
  \fill[white] (-20,-20) rectangle (20,-12);
    \end{tikzpicture}}
}

\begin{document}

\cardfrontfoot{\contour{black}{\textcolor{white}{Functional Analysis}}}
\color{white}
\begin{flashcard}[\contour{black}{\textcolor{white}{Definition}}]{\contour{black}{\textcolor{white}{Norm on a Linear Space}} \\ \contour{black}{\textcolor{white}{Normed Space $mathcheck$ }}}
    A real-valued function $||x||$ defined on a linear space $X$, where15$x \in X$, is said to be a \emph{norm on} $X$ if
\smallskip
\begin{description}
\item [Positivity]            $||x|| \geq 0$,
\item [Triangle Inequality]   $||x+y|| \leq ||x|| + ||y||$,
\item [Homogeneity]           $||\alpha x|| = |\alpha| \:  ||x||$,
$\alpha$ an arbitrary scalar,
\item [Positive Definiteness] $||x|| = 0$ if and only if $x=0$,
\end{description}
\smallskip
$x$ and $y$ are arbitrary points in $X$.
\medskip
linear/vector space with a norm is called a \emph{normed space}.
\end{flashcard}

\begin{flashcard}[Definition]{Inner Product}
$X$ be a complex linear space. An \emph{inner product} on $X$ is
a mapping that associates to each pair of vectors $x$, $y$ a scalar,
denoted $(x,y)$, that satisfies the following properties:
\medskip
\begin{description}
\item [Additivity]            $(x+y,z) = (x,z) + (y,z)$,
\item [Homogeneity]           $(\alpha \: x, y) = \alpha (x,y)$,
\item [Symmetry]              $(x,y) = \overline{(y,x)}$,
\item [Positive Definiteness] $(x,x) > 0$, when $x\neq0$.
\end{description}
\end{flashcard}

\begin{flashcard}[Definition]{Linear Transformation/Operator}
    Atransformation $L$ of (operator on) a linear space $X$ into a linear
    space $Y$, where $X$ and $Y$ have the same scalar field, is said to be
    a \emph{linear transformation (operator)} if
    \medskip
    \begin{enumerate}
        \item $L(\alpha x) = \alpha L(x), \forall x\in X$ and $\forall$
            scalars $\alpha$, and
        \item $L(x_1 + x_2) = L(x_1) + L(x_2)$ for all $x_1,x_2 \in X$.5
\end{enumerate}
\end{flashcard}
\end{document}

编辑

如果我误解了你的评论,这可能就是你的意思;

在此处输入图片描述

\documentclass[avery5388,grid,frame]{flashcards}

\cardfrontstyle[\large\slshape]{headings}
\cardbackstyle{empty}

\usepackage{tikz}
\usepackage{background}
\usepackage[outline]{contour}
\contourlength{1pt}
\usetikzlibrary{patterns,calc}

\backgroundsetup{%
  scale=1,       %% these might be important
  angle=0,       %% these might be important
  opacity=1.,    %% these might be important
  color =black,  %% these might be important
  contents={\begin{tikzpicture}[remember picture,overlay]
          \fill[opacity=0.2,pattern=crosshatch] (-50,-50) rectangle (50,50);
  \fill[white] (-20,-20) rectangle (-6.5,20);
  \fill[white] (20,-20) rectangle (6.5,20);
  \fill[white] (-20,20) rectangle (20,11.2);
  \fill[white] (-20,-20) rectangle (20,-12);
    \end{tikzpicture}}
}

\begin{document}

\cardfrontfoot{\contour{white}{Functional Analysis}}
\begin{flashcard}[\contour{white}{Definition}]{\contour{white}{Norm on a Linear Space} \\ \contour{white}{Normed Space $mathcheck$ }}
    A real-valued function $||x||$ defined on a linear space $X$, where15$x \in X$, is said to be a \emph{norm on} $X$ if
\smallskip
\begin{description}
\item [Positivity]            $||x|| \geq 0$,
\item [Triangle Inequality]   $||x+y|| \leq ||x|| + ||y||$,
\item [Homogeneity]           $||\alpha x|| = |\alpha| \:  ||x||$,
$\alpha$ an arbitrary scalar,
\item [Positive Definiteness] $||x|| = 0$ if and only if $x=0$,
\end{description}
\smallskip
$x$ and $y$ are arbitrary points in $X$.
\medskip
linear/vector space with a norm is called a \emph{normed space}.
\end{flashcard}

\begin{flashcard}[Definition]{Inner Product}
$X$ be a complex linear space. An \emph{inner product} on $X$ is
a mapping that associates to each pair of vectors $x$, $y$ a scalar,
denoted $(x,y)$, that satisfies the following properties:
\medskip
\begin{description}
\item [Additivity]            $(x+y,z) = (x,z) + (y,z)$,
\item [Homogeneity]           $(\alpha \: x, y) = \alpha (x,y)$,
\item [Symmetry]              $(x,y) = \overline{(y,x)}$,
\item [Positive Definiteness] $(x,x) > 0$, when $x\neq0$.
\end{description}
\end{flashcard}

\begin{flashcard}[Definition]{Linear Transformation/Operator}
    Atransformation $L$ of (operator on) a linear space $X$ into a linear
    space $Y$, where $X$ and $Y$ have the same scalar field, is said to be
    a \emph{linear transformation (operator)} if
    \medskip
    \begin{enumerate}
        \item $L(\alpha x) = \alpha L(x), \forall x\in X$ and $\forall$
            scalars $\alpha$, and
        \item $L(x_1 + x_2) = L(x_1) + L(x_2)$ for all $x_1,x_2 \in X$.5
\end{enumerate}
\end{flashcard}
\end{document}

KJO 的最后一篇

所以这个有点更可定制(只需改变 tikz 循环中的间距)。请注意,我再次只在第一张卡片上画了轮廓(但命令是可复制粘贴的)

在此处输入图片描述

\documentclass[avery5388,grid,frame]{flashcards}

\cardfrontstyle[\large\slshape]{headings}
\cardbackstyle{empty}

\usepackage{tikz}
\usepackage{background}
\usepackage[outline]{contour}
\contourlength{1pt}
\usepackage{xcolor}
\usepackage{pdfrender}
\usetikzlibrary{patterns,calc}

\backgroundsetup{%
  scale=1,       %% these might be important
  angle=0,       %% these might be important
  opacity=1.,    %% these might be important
  color =black,  %% these might be important
  contents={\begin{tikzpicture}[remember picture,overlay]
%         \foreach \i in {10.1,10.2,...,150}
          \foreach \i in {-50,-49.5,...,50}
      {

      \draw[thick,opacity=0.75]  (-20,\i) -- (20,{\i+40});
      \draw[thick,opacity=0.75]  (-20,{\i+40}) -- (20,\i);
  }
  \fill[white] (-20,-20) rectangle (-6.5,20);
  \fill[white] (20,-20) rectangle (6.5,20);
  \fill[white] (-20,20) rectangle (20,11.2);
  \fill[white] (-20,-20) rectangle (20,-12);
    \end{tikzpicture}}
}

\begin{document}



\cardfrontfoot{\contour{white}{Functional Analysis}}
\begin{flashcard}[\contour{white}{Definition}]{\contour{white}{Norm on a Linear Space} \\ \contour{white}{Normed Space $mathcheck$ }}
    A real-valued function $||x||$ defined on a linear space $X$, where15$x \in X$, is said to be a \emph{norm on} $X$ if
\smallskip
\begin{description}
\item [Positivity]            $||x|| \geq 0$,
\item [Triangle Inequality]   $||x+y|| \leq ||x|| + ||y||$,
\item [Homogeneity]           $||\alpha x|| = |\alpha| \:  ||x||$,
$\alpha$ an arbitrary scalar,
\item [Positive Definiteness] $||x|| = 0$ if and only if $x=0$,
\end{description}
\smallskip
$x$ and $y$ are arbitrary points in $X$.
\medskip
linear/vector space with a norm is called a \emph{normed space}.
\end{flashcard}

\begin{flashcard}[Definition]{Inner Product}
$X$ be a complex linear space. An \emph{inner product} on $X$ is
a mapping that associates to each pair of vectors $x$, $y$ a scalar,
denoted $(x,y)$, that satisfies the following properties:
\medskip
\begin{description}
\item [Additivity]            $(x+y,z) = (x,z) + (y,z)$,
\item [Homogeneity]           $(\alpha \: x, y) = \alpha (x,y)$,
\item [Symmetry]              $(x,y) = \overline{(y,x)}$,
\item [Positive Definiteness] $(x,x) > 0$, when $x\neq0$.
\end{description}
\end{flashcard}

\begin{flashcard}[Definition]{Linear Transformation/Operator}
    Atransformation $L$ of (operator on) a linear space $X$ into a linear
    space $Y$, where $X$ and $Y$ have the same scalar field, is said to be
    a \emph{linear transformation (operator)} if
    \medskip
    \begin{enumerate}
        \item $L(\alpha x) = \alpha L(x), \forall x\in X$ and $\forall$
            scalars $\alpha$, and
        \item $L(x_1 + x_2) = L(x_1) + L(x_2)$ for all $x_1,x_2 \in X$.5
\end{enumerate}
\end{flashcard}
\end{document}

答案2

这是我提出的莫尔条纹图案。我猜只有秘密的一面需要保护,所以我把图案放在了标题的一面。

\documentclass[avery5388,grid,frame]{flashcards}
\usepackage{lipsum,tikz}

    \cardfrontstyle[\large\sffamily\slshape]{headings}
    \makeatletter
    \def\flashcards@flush{
        \tikzhandler\vskip-\baselineskip\flashcards@flushfronts
        \flashcards@flushbacks
    }
    \def\tikzhandler{%
        \tikz[remember picture,overlay,shift=(current page),opacity=.2]{
            \clip(-6,-11)rectangle(6,11);
            \foreach\j in{0,36,...,179}{
                \draw[rotate=\j,dash pattern={on1off3on2off4},line width=.6]
                    foreach\i in{-12,-11.9,...,12}{
                        (\i,-20)--(\i,20)
                    }
                ;
            }
        }%
    }

\begin{document}

    \cardfrontfoot{Functional Analysis}
    \begin{flashcard}[Definition]
        {\lipsum[1][1]}
        \lipsum[1]
    \end{flashcard}
    \begin{flashcard}[Definition]
        {\lipsum[2][1]}
        \lipsum[2]
    \end{flashcard}
    \begin{flashcard}[Definition]
        {\lipsum[3][1]}
        \lipsum[3]
    \end{flashcard}

\end{document}

从标题栏可以看到什么(模拟)

\documentclass{article}
    \usepackage{tikz,pdfpages}
\begin{document}
    \tikz[remember picture,overlay]{
        \path(current page)node[xscale=-1]{\includegraphics[page=2]{490863.pdf}};
        \fill[white,opacity=.8] % this is the paper itself, adjust its opacity
            (current page.south west)rectangle(current page.north east);
        \path(current page)node{\includegraphics[page=1]{490863.pdf}};
    }
\end{document}

PS 我使用 lorem ipsum 作为秘密文本。如果秘密文本是有意义的,则更有可能被识别。

相关内容