我有一张表,我想将该表与某个标量值(比如 6)相乘,可以在 Latex 中做到这一点吗?
\documentclass
\usepackage{multirow}
\begin{table}[]
\begin{tabular}{ccccccccc}
\hline
\multirow{3}{*}{$\rho_{r}=\frac{\rho_{1}}{\rho}$} & \multicolumn{8}{c}{Symmetric non-dimensional frequencies} \\ \cline{2-9}
& \multicolumn{2}{c}{$\beta_{1}$} & \multicolumn{2}{c}{$\beta_{2}$} & \multicolumn{2}{c}{$\beta_{3}$} & \multicolumn{2}{c}{$\beta_{4}$} \\ \cline{2-9}
& DROM & FEM & DROM & FEM & DROM & FEM & DROM & FEM \\ \hline
1 & 1.213 & 1.212 & 2.208 & 2.201 & 3.141 & 3.123 & 3.602 & 3.569 \\ \hline
10 & 1.213 & 1.212 & 2.208 & 2.201 & 3.141 & 3.123 & 3.602 & 3.567 \\ \hline
1e2 & 1.213 & 1.213 & 2.208 & 2.208 & 3.141 & 3.123 & 3.602 & 3.249 \\ \hline
1e3 & 1.213 & 1.212 & 2.208 & 1.853 & 3.141 & 2.203 & 3.602 & 3.123 \\ \hline
\multirow{3}{*}{$\rho_{r}=\frac{\rho_{1}}{\rho}$} & \multicolumn{8}{c}{Anti-symmetric non-dimensional frequencies} \\ \cline{2-9}
& \multicolumn{2}{c}{$\beta_{1}$} & \multicolumn{2}{c}{$\beta_{1}$} & \multicolumn{2}{c}{$\beta_{1}$} & \multicolumn{2}{c}{$\beta_{1}$} \\ \cline{2-9}
& DROM & FEM & DROM & FEM & DROM & FEM & DROM & FEM \\ \hline
1 & 0.762 & 0.761 & 1.492 & 1.491 & 2.306 & 2.298 & 3.141 & 3.123 \\ \hline
10 & 0.634 & 0.633 & 1.304 & 1.302 & 2.232 & 2.225 & 3.141 & 3.123 \\ \hline
1e2 & 0.398 & 0.397 & 1.225 & 1.223 & 2.212 & 2.204 & 3.141 & 3.123 \\ \hline
1e3 & 0.226 & 0.226 & 1.215 & 1.215 & 2.209 & 2.203 & 3.141 & 2.623 \\ \hline
\end{tabular}
\end{table}
\结束{文档}
答案1
当然可以。使用collcell
。只需安装一些解析器来解析和评估条目,我的选择是\pgfmathparse
。
\documentclass{article}
\usepackage[margin=1in]{geometry}
\usepackage{multirow}
\usepackage{collcell}
\usepackage{pgf}
\newcolumntype{E}{>{\collectcell\usermacro}c<{\endcollectcell}}
\newcommand\usermacro[1]{\pgfmathparse{6*#1}\pgfmathprintnumber\pgfmathresult}
\begin{document}
\begin{table}[htb]
\centering\pgfkeys{/pgf/number format/fixed,
/pgf/number format/fixed zerofill,
/pgf/number format/precision=3}
\begin{tabular}{cEEEEEEEE}
\hline
\multirow{3}{*}{$\rho_{r}=\frac{\rho_{1}}{\rho}$} & \multicolumn{8}{c}{Symmetric non-dimensional frequencies} \\ \cline{2-9}
& \multicolumn{2}{c}{$\beta_{1}$} & \multicolumn{2}{c}{$\beta_{2}$} & \multicolumn{2}{c}{$\beta_{3}$} & \multicolumn{2}{c}{$\beta_{4}$} \\ \cline{2-9}
& \multicolumn{1}{c}{DROM} & \multicolumn{1}{c}{FEM} & \multicolumn{1}{c}{DROM} & \multicolumn{1}{c}{FEM} & \multicolumn{1}{c}{DROM} & \multicolumn{1}{c}{FEM} & \multicolumn{1}{c}{DROM} & \multicolumn{1}{c}{FEM} \\ \hline
1 & 1.213 & 1.212 & 2.208 & 2.201 & 3.141 & 3.123 & 3.602 & 3.569 \\ \hline
10 & 1.213 & 1.212 & 2.208 & 2.201 & 3.141 & 3.123 & 3.602 & 3.567 \\ \hline
1e2 & 1.213 & 1.213 & 2.208 & 2.208 & 3.141 & 3.123 & 3.602 & 3.249 \\ \hline
1e3 & 1.213 & 1.212 & 2.208 & 1.853 & 3.141 & 2.203 & 3.602 & 3.123 \\ \hline
\multirow{3}{*}{$\rho_{r}=\frac{\rho_{1}}{\rho}$} & \multicolumn{8}{c}{Anti-symmetric non-dimensional frequencies} \\ \cline{2-9}
& \multicolumn{2}{c}{$\beta_{1}$} & \multicolumn{2}{c}{$\beta_{1}$} & \multicolumn{2}{c}{$\beta_{1}$} & \multicolumn{2}{c}{$\beta_{1}$} \\ \cline{2-9}
& \multicolumn{1}{c}{DROM} & \multicolumn{1}{c}{FEM} & \multicolumn{1}{c}{DROM} & \multicolumn{1}{c}{FEM} & \multicolumn{1}{c}{DROM} & \multicolumn{1}{c}{FEM} & \multicolumn{1}{c}{DROM} & \multicolumn{1}{c}{FEM} \\ \hline
1 & 0.762 & 0.761 & 1.492 & 1.491 & 2.306 & 2.298 & 3.141 & 3.123 \\ \hline
10 & 0.634 & 0.633 & 1.304 & 1.302 & 2.232 & 2.225 & 3.141 & 3.123 \\ \hline
1e2 & 0.398 & 0.397 & 1.225 & 1.223 & 2.212 & 2.204 & 3.141 & 3.123 \\ \hline
1e3 & 0.226 & 0.226 & 1.215 & 1.215 & 2.209 & 2.203 & 3.141 & 2.623 \\ \hline
\end{tabular}
\end{table}
\end{document}