方程数组后面的矩形

方程数组后面的矩形

我想在投影仪中的这组方程式后面创建填充透明度的矩形,以解释之间的差异。

在此处输入图片描述

这是所用方程的代码。欢迎任何帮助:

 \begin{frame}   \frametitle{Obtained constraints}
    \vspace{-0.8cm}
    \begin{columns}
        \begin{column}{0.5\textwidth}

            \begin{equation}\footnotesize
            \left \{
            \begin{array}{rcl}
            %& & \text{minimize }\quad LOHtarget_D - LOH_{K}  \\
            %s.t.: \\
            Pload_k & \leq & Pwt_k + Ppv_k + (Pfc_k + Pdch_k) \eta_{inv}\\
            & &-(Pez_k + Pch_k) \eta_{inv}\\
            %
            SOC_k & = & SOC_{k-1} (1-\sigma) + Pch_{k-1}\Delta t\times\eta_{ch} \\
            &&-  Pdch_{k-1} \Delta t/\eta_{dch} \\
            %
            Pez_k & = & \displaystyle HHVh_2 \times Qez_k / \eta_{ez}/\Delta t \\
            %
            Pfc_k & = & LHVh_2 \times Qfc_k\times \eta_{fc}/\Delta t\\
            %
            LOH_k & = & LOH_{k-1} + Qez_{k-1} - Qfc_{k-1}/\eta_{tank} \\
            %
            Pch_k & \leq & x_k\times Pchmax \\
            Pch_k & \geq & 0 \\
            Pch_k & \leq & x_k \times Pchmax \\
            Pch_k & \leq & Pch'_k \\
            Pch_k & \ge & Pch'_k - (1 - x_k)Pchmax\\
            %
            Pdch_k & \leq & (1-x_k) \times Pdchmax\\
            Pdch_k & \ge & 0 \\
            Pdch_k & \leq & (1 - x_k) Pdchmax \\
            Pdch_k & \leq & Pdch'_k\\
            Pdch_k & \ge & Pdch'_k - x_k Pdchmax\\
            %
            Pez_k & \leq & Pez'_k\\
            Pez_k & \geq & 0\\
            Pez_k & \leq & y_k\times Pezmax\\
            Pez_k & \geq & Pez'_k - (1-y_k)Pezmax\\
            0 & \leq &  Pez'_k \leq Pezmax\\
            Pez_k & \geq & y_k \times Pezmin\\
            %
            Qez_k & \leq & Qez'_k\\
            \nonumber
            \end{array}
            \right.
            \end{equation}
        \end{column}

        \begin{column}{0.5\textwidth}
            \begin{equation}\footnotesize
            \left \{
            \begin{array}{rcl}
            Qez_k & \geq & 0\\
            Qez_k & \leq & z_k \times Qezmax\\
            Qez_k & \geq & Qez'_k - (1-z_k)Qezmax\\
            0 & \leq & Qez'_k \leq Qezmax\\
            %
            Qfc_k & \leq & Qfc'_k\\
            Qfc_k & \geq & 0\\
            Qfc_k & \leq & (1-z_k) \times Qfcmax\\
            Qfc_k & \geq & Qfc'_k -z_k \times Qfcmax\\
            0 & \leq & Qfc'_k \leq Qfcmax\\
            %
            y_k & = & x_k\times y_k \\
            u_k &\leq& x_k\\
            u_k &\leq& y_k\\
            0 &\leq& 1 - x_k -y_k +u\\
            u_k &\geq& 0\\
            v_k &\leq& x_k\\
            v_k &\leq& z_k\\
            0 &\leq& 1 - x_k -z_k +v\\
            v_k &\geq& 0\\
            \nonumber
            \end{array}
            \right.
            \end{equation}
        \end{column}
    \end{columns}}

    \end{frame}

相关内容