我想在投影仪中的这组方程式后面创建填充透明度的矩形,以解释之间的差异。
这是所用方程的代码。欢迎任何帮助:
\begin{frame} \frametitle{Obtained constraints}
\vspace{-0.8cm}
\begin{columns}
\begin{column}{0.5\textwidth}
\begin{equation}\footnotesize
\left \{
\begin{array}{rcl}
%& & \text{minimize }\quad LOHtarget_D - LOH_{K} \\
%s.t.: \\
Pload_k & \leq & Pwt_k + Ppv_k + (Pfc_k + Pdch_k) \eta_{inv}\\
& &-(Pez_k + Pch_k) \eta_{inv}\\
%
SOC_k & = & SOC_{k-1} (1-\sigma) + Pch_{k-1}\Delta t\times\eta_{ch} \\
&&- Pdch_{k-1} \Delta t/\eta_{dch} \\
%
Pez_k & = & \displaystyle HHVh_2 \times Qez_k / \eta_{ez}/\Delta t \\
%
Pfc_k & = & LHVh_2 \times Qfc_k\times \eta_{fc}/\Delta t\\
%
LOH_k & = & LOH_{k-1} + Qez_{k-1} - Qfc_{k-1}/\eta_{tank} \\
%
Pch_k & \leq & x_k\times Pchmax \\
Pch_k & \geq & 0 \\
Pch_k & \leq & x_k \times Pchmax \\
Pch_k & \leq & Pch'_k \\
Pch_k & \ge & Pch'_k - (1 - x_k)Pchmax\\
%
Pdch_k & \leq & (1-x_k) \times Pdchmax\\
Pdch_k & \ge & 0 \\
Pdch_k & \leq & (1 - x_k) Pdchmax \\
Pdch_k & \leq & Pdch'_k\\
Pdch_k & \ge & Pdch'_k - x_k Pdchmax\\
%
Pez_k & \leq & Pez'_k\\
Pez_k & \geq & 0\\
Pez_k & \leq & y_k\times Pezmax\\
Pez_k & \geq & Pez'_k - (1-y_k)Pezmax\\
0 & \leq & Pez'_k \leq Pezmax\\
Pez_k & \geq & y_k \times Pezmin\\
%
Qez_k & \leq & Qez'_k\\
\nonumber
\end{array}
\right.
\end{equation}
\end{column}
\begin{column}{0.5\textwidth}
\begin{equation}\footnotesize
\left \{
\begin{array}{rcl}
Qez_k & \geq & 0\\
Qez_k & \leq & z_k \times Qezmax\\
Qez_k & \geq & Qez'_k - (1-z_k)Qezmax\\
0 & \leq & Qez'_k \leq Qezmax\\
%
Qfc_k & \leq & Qfc'_k\\
Qfc_k & \geq & 0\\
Qfc_k & \leq & (1-z_k) \times Qfcmax\\
Qfc_k & \geq & Qfc'_k -z_k \times Qfcmax\\
0 & \leq & Qfc'_k \leq Qfcmax\\
%
y_k & = & x_k\times y_k \\
u_k &\leq& x_k\\
u_k &\leq& y_k\\
0 &\leq& 1 - x_k -y_k +u\\
u_k &\geq& 0\\
v_k &\leq& x_k\\
v_k &\leq& z_k\\
0 &\leq& 1 - x_k -z_k +v\\
v_k &\geq& 0\\
\nonumber
\end{array}
\right.
\end{equation}
\end{column}
\end{columns}}
\end{frame}