我有以下代码:
\documentclass[11pt,a4paper]{article}
\usepackage{amssymb,amsmath,bm}
\begin{document}
\begin{align*}
\beta_{1t} &= \mu_1 + f_{11}\beta_{1,t-1} &+ f_{14}GDP_t + f_{15}FFR_t + f_{16}CPI_t + \eta_{1t} \\
\beta_{2t} &= \mu_{2,S_t} &+ f_{24}GDP_t + f_{25}FFR_t + f_{26}CPI_t + \eta_{2t} \\
\beta_{3t} &= \mu_3 + f_{33}\beta_{3,t-1} &+ f_{34}GDP_t + f_{35}FFR_t + f_{36}CPI_t + \eta_{3t} \\
GDP_t &= &f_{44}GDP_{t-1} + \eta_{4t} \\
FFR_t &= &f_{55}FFR_{t-1} + \eta_{5t} \\
CPI_t &= &f_{66}CPI_{t-1} + \eta_{6t}
\end{align*}
\end{document}
现在,我想将第 4 个到第 6 个方程中的变量排列在与前三个方程相同的列中(因此 GDP 位于 GDP 列下方,FFR 位于 FFR 列下方,等等)。
当方程式不具有相同数量的元素时,我不确定如何做到这一点。
答案1
\documentclass[11pt,a4paper]{article}
\usepackage{amssymb, amsmath, bm}
\begin{document}
\begin{alignat*}{8}
\beta_{1t} &= \mu_1 + f_{11}\beta_{1,t-1} &{}+{}& f_{14}GDP_t
&{}+{}& f_{15}FFR_t &{}+{}& f_{16}CPI_t &{}+{}& \eta_{1t} \\
\beta_{2t} &= \mu_{2,S_t} &{}+{}& f_{24}GDP_t &{}+{}& f_{25}FFR_t
&{}+{}& f_{26}CPI_t &{}+{}& \eta_{2t} \\
\beta_{3t} &= \mu_3 + f_{33}\beta_{3,t-1} &{}+{}& f_{34}GDP_t
&{}+{}& f_{35}FFR_t &{}+{}& f_{36}CPI_t &{}+{}& \eta_{3t} \\
GDP_t &= && f_{44}GDP_{t-1} && &&&{}+{}& \eta_{4t} \\
FFR_t &= && &&f_{55}FFR_{t-1}&& &{}+{}& \eta_{5t} \\
CPI_t &= && && &&f_{66}CPI_{t-1} &{}+{}& \eta_{6t}
\end{alignat*}
\end{document}
以下是使用 TABstack 的一种方法:
\documentclass[11pt,a4paper]{article}
\usepackage{amssymb, amsmath, bm}
\usepackage{tabstackengine}
\TABstackMath
\begin{document}
\[
\setstackaligngap{0pt}
\TABbinary
\setstackgap{L}{1.2\baselineskip}
\alignCenterstack{
\beta_{1t} &= \mu_1 + f_{11}\beta_{1,t-1} &+&
f_{14}GDP_t &+& f_{15}FFR_t &+& f_{16}CPI_t &+& \eta_{1t} \\
\beta_{2t} &= \mu_{2,S_t} &+& f_{24}GDP_t &+&
f_{25}FFR_t &+& f_{26}CPI_t &+& \eta_{2t} \\
\beta_{3t} &= \mu_3 + f_{33}\beta_{3,t-1} &+&
f_{34}GDP_t &+& f_{35}FFR_t &+& f_{36}CPI_t &+& \eta_{3t} \\
GDP_t &= && f_{44}GDP_{t-1} && &&&+& \eta_{4t} \\
FFR_t &= && &&f_{55}FFR_{t-1}&& &+& \eta_{5t} \\
CPI_t &= && && &&f_{66}CPI_{t-1} &+& \eta_{6t}
}
\]
\end{document}
答案2
您可以使用标准array
;列间距设置为零;>{{}}c<{{}}
操作符号周围的间距设置为正常间距。
我使用了一些\multicolumn
命令来避免漏洞。
对于多字母变量最好使用\mathit
。
\documentclass[11pt,a4paper]{article}
\usepackage{amsmath,array}
\newcommand{\var}[1]{\mathit{#1}}
\begin{document}
\begin{equation*}
\setlength{\arraycolsep}{0pt}
\renewcommand{\arraystretch}{1.5}
\newcommand{\mc}[1]{\multicolumn{3}{l}{#1}}
\begin{array}{ r *{6}{ >{{}}c<{{}} l } }
\beta_{1t} &=& \mu_1 &+& f_{11}\beta_{1,t-1} &+& f_{14}\var{GDP}_t &+& f_{15}\var{FFR}_t &+& f_{16}\var{CPI}_t &+& \eta_{1t} \\
\beta_{2t} &=& \mc{\mu_{2,S_t}} &+& f_{24}\var{GDP}_t &+& f_{25}\var{FFR}_t &+& f_{26}\var{CPI}_t &+& \eta_{2t} \\
\beta_{3t} &=& \mu_3 &+& f_{33}\beta_{3,t-1} &+& f_{34}\var{GDP}_t &+& f_{35}\var{FFR}_t &+& f_{36}\var{CPI}_t &+& \eta_{3t} \\
\var{GDP}_t &=& & & & & \mc{f_{44}\var{GDP}_{t-1}} & & &+& \eta_{4t} \\
\var{FFR}_t &=& & & & & \mc{f_{55}\var{FFR}_{t-1}} & & &+& \eta_{5t} \\
\var{CPI}_t &=& & & & & \mc{f_{66}\var{CPI}_{t-1}} & & &+& \eta_{6t}
\end{array}
\end{equation*}
\end{document}
然而,对于这种特殊的结构,输入可以简化。
\documentclass[11pt,a4paper]{article}
\usepackage{amsmath,array}
\newcommand{\var}[1]{\mathit{#1}}
\begin{document}
\begin{equation*}
\setlength{\arraycolsep}{0pt}
\renewcommand{\arraystretch}{1.5}
\begin{array}{ r *{3}{ >{{}}c<{{}} l } }
\beta_{1t} &=& \mu_1 + f_{11}\beta_{1,t-1} &+& f_{14}\var{GDP}_t + f_{15}\var{FFR}_t + f_{16}\var{CPI}_t &+& \eta_{1t} \\
\beta_{2t} &=& \mu_{2,S_t} &+& f_{24}\var{GDP}_t + f_{25}\var{FFR}_t + f_{26}\var{CPI}_t &+& \eta_{2t} \\
\beta_{3t} &=& \mu_3 + f_{33}\beta_{3,t-1} &+& f_{34}\var{GDP}_t + f_{35}\var{FFR}_t + f_{36}\var{CPI}_t &+& \eta_{3t} \\
\var{GDP}_t &=& & & f_{44}\var{GDP}_{t-1} &+& \eta_{4t} \\
\var{FFR}_t &=& & & f_{55}\var{FFR}_{t-1} &+& \eta_{5t} \\
\var{CPI}_t &=& & & f_{66}\var{CPI}_{t-1} &+& \eta_{6t}
\end{array}
\end{equation*}
\end{document}
答案3
仅使用 4 列的变体alignat
,其中一些mathrlap
来自mathtools
:
\documentclass[11pt,a4paper]{article}
\usepackage{amssymb, mathtools, bm}
\begin{document}
\begin{alignat*}{4}
\beta_{1t} &= \mu_1 & + f_{11}\beta_{1,t-1} &{}+ f_{14}GDP_t & & + f_{15}FFR_t & & + f_{16}CPI_t + \eta_{1t} \\
\beta_{2t} &= \mathrlap{\mu_{2,S_t}} & &{}+ f_{24}GDP_t & & + f_{25}FFR_t & & + f_{26}CPI_t + \eta_{2t} \\
\beta_{3t} &= \mu_3 & + f_{33}\beta_{3,t-1} &{}+ f_{34}GDP_t & & + f_{35}FFR_t & & + f_{36}CPI_t + \eta_{3t} \\
GDP_t &= & &\phantom{{}+{}} f_{44}\mathrlap{GDP_{t-1}+\eta_{4t}} \\
FFR_t &= & & & & \phantom{{}+{}}f_{55}\mathrlap{FFR_{t-1} + \eta_{5t}} \\
CPI_t &= & & & & & & \phantom{{}+{}} f_{66}CPI_{t-1} + \eta_{6t}
\end{alignat*}
\end{document}