Beamer 中预定义环境的框架问题

Beamer 中预定义环境的框架问题

我正在尝试将现有文件改编为投影仪演示文稿。它们都有一个预定义的question环境,我需要更改它。

testcontent.tex,我有

\section*{first section}

%%Q1
\begin{question}
The line $y=a^2 x$ and  the curve  $y=x(b-x)^2$, where $0<a<b\,$, intersect at the origin $O$ and at points $P$ and $Q $. The $x$-coordinate of $P$ is less than the $x$-coordinate  of $Q$. Find the coordinates of $P$  and $Q$, and sketch the line and the curve   on the same axes. 
\end{question}

%%Q2
\begin{question}
If $x=\log_b(c)\,$, express $c$ in terms of $b$ and $x$ and prove that $ \dfrac{\log_a (c)}{\log_a (b)} = \ds \log_b (c) \,$.
\end{question}


\section*{last section}
%%Q3
\begin{question}
The line $y=a^2 x$ and  the curve  $y=x(b-x)^2$, where $0<a<b\,$, intersect at the origin $O$ and at points $P$ and $Q $. The $x$-coordinate of $P$ is less than the $x$-coordinate  of $Q$. Find the coordinates of $P$  and $Q$, and sketch the line and the curve   on the same axes. 
\end{question}

%%Q4
\begin{question}
If $x=\log_b(c)\,$, express $c$ in terms of $b$ and $x$ and prove that $ \dfrac{\log_a (c)}{\log_a (b)} = \ds \log_b (c) \,$.
\end{question}

我想做的是提出问题每一帧(回答长问题时允许休息),所以我就这么做了

\documentclass[12pt]{beamer}

\usepackage{amsmath,amssymb}

\newcounter{qnumber}
\setcounter{qnumber}{0}

\newenvironment{question}%
{
\begin{frame}[allowframebreaks]%
    \begin{enumerate}[\bfseries Q1\quad][10]%
        \setcounter{enumi}{\value{qnumber}}%
        \item%
}{
    \end{enumerate}
    \stepcounter{qnumber}
\end{frame}
}

\begin{document}

\input{testcontent}

\end{document}

答案1

改编:

  • fragile, environment=questionframe环境添加了选项
  • 已删除[\bfseries Q1\quad][10],因为默认枚举没有选项
    • 改用\setbeamertemplate{enumerate item}{Q\arabic{enumi}}
  • 删除了未定义的命令\ds

代码:

\documentclass[12pt]{beamer}

\usepackage{amsmath,amssymb}

\newcounter{qnumber}
\setcounter{qnumber}{0}


\newenvironment{question}%
{
\begin{frame}[fragile,environment=question,allowframebreaks]
    \setbeamertemplate{enumerate item}{Q\arabic{enumi}}
    \begin{enumerate}
        \setcounter{enumi}{\value{qnumber}}%
        \item%
}{
    \end{enumerate}
    \stepcounter{qnumber}
\end{frame}
}

\begin{document}

\section*{first section}

%%Q1
\begin{question}
    The line $y=a^2 x$ and  the curve  $y=x(b-x)^2$, where $0<a<b\,$, intersect at the origin $O$ and at points $P$ and $Q $. The $x$-coordinate of $P$ is less than the $x$-coordinate  of $Q$. Find the coordinates of $P$  and $Q$, and sketch the line and the curve   on the same axes.
\end{question}

%%Q2
\begin{question}
If $x=\log_b(c)\,$, express $c$ in terms of $b$ and $x$ and prove that $ \dfrac{\log_a (c)}{\log_a (b)} = \log_b (c) \,$.
\end{question}


\section*{last section}
%%Q3
\begin{question}
The line $y=a^2 x$ and  the curve  $y=x(b-x)^2$, where $0<a<b\,$, intersect at the origin $O$ and at points $P$ and $Q $. The $x$-coordinate of $P$ is less than the $x$-coordinate  of $Q$. Find the coordinates of $P$  and $Q$, and sketch the line and the curve   on the same axes. 
\end{question}

%%Q4
\begin{question}
If $x=\log_b(c)\,$, express $c$ in terms of $b$ and $x$ and prove that $ \dfrac{\log_a (c)}{\log_a (b)} = \log_b (c) \,$.
\end{question}

\end{document}

结果:

在此处输入图片描述

相关内容