下面我尝试在特定位置拆分一个框架而不重复标题,但似乎没有发生。
\begin{frame}[allowframebreaks]{A result about multiples}
\large
\begin{Theorem}
Let $\textit{n} \in \mathbb{Z}^{+}$. There is a multiple of n that only contains 0's and 1's (expressed base 10)
\end{Theorem}
\begin{Proof}
\begin{itemize}
\setbeamertemplate{itemize items}[ball]
\item Write a list $1,11,111,1111,....$
\item Each of these numbers on a division by n gives a remainder, one of $\{0,1,2,....,n-1\}$
\item n possible remainders
\framebreak
\item more than \sout{one} \textit{n} (in fact infinity) numbers in list
\item by Pigeonhole principle there are \textit{a,b} in list, $\textit{a}<\textit{b}$, same remainder \textit{r}
\item \textit{b-a} is divisible by \textit{r}
\item \textit{b-a} $=$
\item \textit{b-a} is the required multiple.
\end{itemize}
\end{Proof}
\end{frame}
答案1
\begin{frame}{A result about multiples}
\Large
\begin{Theorem}
Let $\textit{n} \in \mathbb{Z}^{+}$. There is a multiple of n that only contains 0's and 1's (expressed base 10)
\end{Theorem}
\begin{block}{Proof}
\begin{itemize}
\setlength{\itemsep}{4mm}
\setbeamertemplate{itemize items}[ball]
\item Write a list $1,11,111,1111,\dots$
\item Each of these numbers on a division by n gives a remainder, one of $\{0,1,2,\dots,n-1\}$
\item n possible remainders
\end{itemize}
\end{block}
\end{frame}
\begin{frame}
\Large
\vspace{-0.9cm}
\begin{block}{Proof(cont.)}
%\setbeamercolor{block title}{bg=white}
%\setbeamercolor{block body}{bg=white}
\begin{itemize}
\setlength{\itemsep}{7mm}
\setbeamertemplate{itemize items}[ball]
\item more than \xout{one} \textit{n} (in fact infinity) numbers in list
\item by Pigeonhole principle there are \textit{a,b} in list, $\textit{a}<\textit{b}$, same remainder \textit{r}.
\item \textit{b-a} is divisible by \textit{r}
\item
$
\!
\begin{aligned}[t]
b-a &= 111\cdots \: 111 \text{ -- } 11 \cdots\cdots \: 111\\
&= 11 \: 11 \cdots\cdots 1100 \cdots 0
\end{aligned}
$
\item \textit{b-a} is the required multiple.
\qed
\end{itemize}
\end{block}
\end{frame}