我正在尝试使用 tikz-feynman(在 overleaf 上)生成一些费曼图。我希望特别等同于 blob 图,我设法让它工作了,但它看起来根本不像样子。
我希望得到一些关于如何做到的建议:
1)将方程设为中心
2)将“=”符号设置在中间“高度”(即图表高度的一半)
3) 更改 blob 中文字的字体(bf 看起来很糟糕)
4)改变斑点阴影
抱歉我的问题太多了,但我认为它们都属于 tikz-feynman 的“排版”类别。如果我需要更改问题,请告诉我。感谢您的时间!代码示例:
\documentclass{article}
\usepackage[utf8]{inputenc}
\usepackage{amsmath}
\usepackage[compat=1.0.0]{tikz-feynman}
\usepackage{contour}
\begin{document}
\begin{equation*}
\begin{tikzpicture}
\begin{feynman}
\vertex[blob] (m) at (0,0) {\contour{gray}{$G^c$}};
\vertex (a) at (-2,-2) ;
\vertex (b) at ( 2,-2);
\vertex (c) at (0, 2.8);
\diagram* {
(a) -- [edge label=$x_1$] (m) -- [edge label=$x_2$] (b),
(c) -- [edge label=$x_3$] (m)};
\end{feynman}
\end{tikzpicture}
\quad = \quad
\begin{tikzpicture}
\begin{feynman}
\vertex[blob] (m) at (0,0) {\contour{black}{$G^{1PI}$}};
\vertex (a) at (-2,-2) ;
\vertex[blob] (m1) at (0,1.4) {\contour{gray}{$G^c$}};
\vertex[blob] (m2) at (1,-1) {\contour{gray}{$G^c$}};
\vertex[blob] (m3) at (-1,-1) {\contour{gray}{$G^c$}};
\vertex (b) at ( 2,-2);
\vertex (c) at (0, 2.8);
\diagram* {
(a) -- [edge label=$x_1$] (m3) -- [edge label=$z_1$] (m),
(b) -- [edge label=$x_2$] (m2) -- [edge label=$z_2$] (m),
(c) -- [edge label=$x_3$] (m1) -- [edge label=$z_3$] (m)};
\end{feynman}
\end{tikzpicture}
\end{equation*}
\end{document}
答案1
欢迎!您可以将图表包装到 中\vcenter{\hbox{...}}
。另请注意,环境中不能有空行equation*
。
\documentclass{article}
\usepackage[utf8]{inputenc}
\usepackage{amsmath}
\usepackage[compat=1.0.0]{tikz-feynman}
\usepackage{contour}
\begin{document}
\begin{equation*}
\vcenter{\hbox{\begin{tikzpicture}
\begin{feynman}
\vertex[blob] (m) at (0,0) {\contour{gray}{$G^c$}};
\vertex (a) at (-2,-2) ;
\vertex (b) at ( 2,-2);
\vertex (c) at (0, 2.8);
\diagram* {
(a) -- [edge label=$x_1$] (m) -- [edge label=$x_2$] (b),
(c) -- [edge label=$x_3$] (m)};
\end{feynman}
\end{tikzpicture}}}
\quad = \quad
\vcenter{\hbox{\begin{tikzpicture}
\begin{feynman}
\vertex[blob] (m) at (0,0) {\contour{black}{$G^{1PI}$}};
\vertex (a) at (-2,-2) ;
\vertex[blob] (m1) at (0,1.4) {\contour{gray}{$G^c$}};
\vertex[blob] (m2) at (1,-1) {\contour{gray}{$G^c$}};
\vertex[blob] (m3) at (-1,-1) {\contour{gray}{$G^c$}};
\vertex (b) at ( 2,-2);
\vertex (c) at (0, 2.8);
\diagram* {
(a) -- [edge label=$x_1$] (m3) -- [edge label=$z_1$] (m),
(b) -- [edge label=$x_2$] (m2) -- [edge label=$z_2$] (m),
(c) -- [edge label=$x_3$] (m1) -- [edge label=$z_3$] (m)};
\end{feynman}
\end{tikzpicture}}}
\end{equation*}
\end{document}
或者使用不同的粗体字体和不同的斑点。(仅仅说某样东西看起来很糟糕是没有多大帮助的,你可能需要说说它看起来怎么样。)
\documentclass{article}
\usepackage[utf8]{inputenc}
\usepackage{amsmath}
\usepackage[compat=1.0.0]{tikz-feynman}
\begin{document}
\begin{equation*}
\vcenter{\hbox{\begin{tikzpicture}
\begin{feynman}[every blob={/tikz/fill=gray!30,/tikz/inner sep=2pt}]
\vertex[blob] (m) at (0,0) {$\boldsymbol{G^c}$};
\vertex (a) at (-2,-2) ;
\vertex (b) at ( 2,-2);
\vertex (c) at (0, 2.8);
\diagram* {
(a) -- [edge label=$x_1$] (m) -- [edge label=$x_2$] (b),
(c) -- [edge label=$x_3$] (m)};
\end{feynman}
\end{tikzpicture}}}
\quad = \quad
\vcenter{\hbox{\begin{tikzpicture}
\begin{feynman}[every blob={/tikz/fill=gray!30,/tikz/inner sep=2pt}]
\vertex[blob] (m) at (0,0) {$\boldsymbol{G^{1PI}}$};
\vertex (a) at (-2,-2) ;
\vertex[blob] (m1) at (0,1.4) {$\boldsymbol{G^c}$};
\vertex[blob] (m2) at (1,-1) {$\boldsymbol{G^c}$};
\vertex[blob] (m3) at (-1,-1) {$\boldsymbol{G^c}$};
\vertex (b) at ( 2,-2);
\vertex (c) at (0, 2.8);
\diagram* {
(a) -- [edge label=$x_1$] (m3) -- [edge label=$z_1$] (m),
(b) -- [edge label=$x_2$] (m2) -- [edge label=$z_2$] (m),
(c) -- [edge label=$x_3$] (m1) -- [edge label=$z_3$] (m)};
\end{feynman}
\end{tikzpicture}}}
\end{equation*}
\end{document}
答案2
作为不错的选择回答薛定谔的猫,你可以使用嵌套表格进行垂直居中(见https://tex.stackexchange.com/a/473626/),保留原始的斑点图案,但将其设置为您喜欢的灰色(例如 80%),然后\mathbf
在顶部使用。
\documentclass{article}
\usepackage[utf8]{inputenc}
\usepackage{amsmath}
\usepackage{tikz-feynman}
\tikzfeynmanset{every blob={/tikz/pattern color={gray!80}}}
\begin{document}
\begin{tabular}{ccc}
% https://tex.stackexchange.com/a/473626/
\begin{tabular}{c}
\begin{tikzpicture}
\begin{feynman}
\vertex[blob] (m) at (0,0) {$\mathbf{G^c}$};
\vertex (a) at (-2,-2) ;
\vertex (b) at ( 2,-2);
\vertex (c) at (0, 2.8);
\diagram* {
(a) -- [edge label=$x_1$] (m) -- [edge label=$x_2$] (b),
(c) -- [edge label=$x_3$] (m)};
\end{feynman}
\end{tikzpicture}
\end{tabular}
&
\begin{tabular}{c}
=
\end{tabular}
&
\begin{tabular}{c}
\begin{tikzpicture}
\begin{feynman}
\vertex[blob] (m) at (0,0) {$\mathbf{G^{1PI}}$};
\vertex (a) at (-2,-2) ;
\vertex[blob] (m1) at (0,1.4) {$\mathbf{G^c}$};
\vertex[blob] (m2) at (1,-1) {$\mathbf{G^c}$};
\vertex[blob] (m3) at (-1,-1) {$\mathbf{G^c}$};
\vertex (b) at ( 2,-2);
\vertex (c) at (0, 2.8);
\diagram* {
(a) -- [edge label=$x_1$] (m3) -- [edge label=$z_1$] (m),
(b) -- [edge label=$x_2$] (m2) -- [edge label=$z_2$] (m),
(c) -- [edge label=$x_3$] (m1) -- [edge label=$z_3$] (m)};
\end{feynman}
\end{tikzpicture}
\end{tabular}
\end{tabular}
\end{document}
结果: