我想绘制一个矩阵,以pgfplots
匹配我的 LaTeX 文档其余部分的样式。所需的输出类似于 Mathematica 中的此图:
但是当我尝试绘制这些数据时,pgfplots
我得到的颜色分辨率要低得多:
\documentclass[tikz]{standalone}
\usepackage{pgfplots, filecontents}
\usepgfplotslibrary{colormaps}
\pgfplotsset{width=12cm, compat=1.16} \usepgfplotslibrary{external}
\pgfplotsset{compat=newest,
colormap={blackwhite}{[1pt]
rgb255(0pt)=(0, 100, 255)
rgb255(500pt)=(255, 255, 255);
rgb255(1000pt)=(255, 75, 0);
},}
\begin{filecontents*}{temp.dat}
0 0 -1.02348
0 1 3.74392e-06
0 2 0
0 3 0
0 4 0
0 5 0
0 6 0
0 7 0
0 8 0
0 9 0
0 10 0
0 11 0
0 12 0
0 13 0
0 14 0
0 15 0
0 16 0
0 17 0
0 18 0
0 19 0
0 20 0.0372893
0 21 0
0 22 0
0 23 0
0 24 0
0 25 0
0 26 0
0 27 0
0 28 0
0 29 0
0 30 0
0 31 0
0 32 0
0 33 0
0 34 0
0 35 0
0 36 0
0 37 0
0 38 0
0 39 0
1 0 0
1 1 -1.02349
1 2 5.99027e-05
1 3 0
1 4 0
1 5 0
1 6 0
1 7 0
1 8 0
1 9 0
1 10 0
1 11 0
1 12 0
1 13 0
1 14 0
1 15 0
1 16 0
1 17 0
1 18 0
1 19 0
1 20 0
1 21 0.0372893
1 22 0
1 23 0
1 24 0
1 25 0
1 26 0
1 27 0
1 28 0
1 29 0
1 30 0
1 31 0
1 32 0
1 33 0
1 34 0
1 35 0
1 36 0
1 37 0
1 38 0
1 39 0
2 0 0
2 1 5.18667e-06
2 2 -1.02362
2 3 0.000303258
2 4 0
2 5 0
2 6 0
2 7 0
2 8 0
2 9 0
2 10 0
2 11 0
2 12 0
2 13 0
2 14 0
2 15 0
2 16 0
2 17 0
2 18 0
2 19 0
2 20 0
2 21 0
2 22 0.0372893
2 23 0
2 24 0
2 25 0
2 26 0
2 27 0
2 28 0
2 29 0
2 30 0
2 31 0
2 32 0
2 33 0
2 34 0
2 35 0
2 36 0
2 37 0
2 38 0
2 39 0
3 0 0
3 1 0
3 2 8.29867e-05
3 3 -1.0242
3 4 0.000958444
3 5 0
3 6 0
3 7 0
3 8 0
3 9 0
3 10 0
3 11 0
3 12 0
3 13 0
3 14 0
3 15 0
3 16 0
3 17 0
3 18 0
3 19 0
3 20 0
3 21 -0
3 22 0
3 23 0.0372893
3 24 0
3 25 0
3 26 0
3 27 0
3 28 0
3 29 0
3 30 0
3 31 0
3 32 0
3 33 0
3 34 0
3 35 0
3 36 0
3 37 0
3 38 0
3 39 0
4 0 0
4 1 0
4 2 0
4 3 0.00042012
4 4 -1.02577
4 5 0.00233995
4 6 0
4 7 0
4 8 0
4 9 0
4 10 0
4 11 0
4 12 0
4 13 0
4 14 0
4 15 0
4 16 0
4 17 0
4 18 0
4 19 0
4 20 0
4 21 -0
4 22 -0
4 23 8.68125e-17
4 24 0.0372893
4 25 0
4 26 0
4 27 0
4 28 0
4 29 0
4 30 0
4 31 0
4 32 0
4 33 0
4 34 0
4 35 0
4 36 0
4 37 0
4 38 0
4 39 0
5 0 0
5 1 0
5 2 0
5 3 -6.5579e-18
5 4 0.00132779
5 5 -1.02906
5 6 0.00485212
5 7 0
5 8 0
5 9 0
5 10 0
5 11 0
5 12 0
5 13 0
5 14 0
5 15 0
5 16 0
5 17 0
5 18 0
5 19 0
5 20 0
5 21 -0
5 22 -0
5 23 3.55584e-17
5 24 3.01617e-14
5 25 0.0372893
5 26 0
5 27 0
5 28 0
5 29 0
5 30 0
5 31 0
5 32 0
5 33 0
5 34 0
5 35 0
5 36 0
5 37 0
5 38 0
5 39 0
6 0 0
6 1 0
6 2 0
6 3 -3.16257e-18
6 4 -3.39595e-15
6 5 0.00324167
6 6 -1.03505
6 7 0.00898915
6 8 0
6 9 0
6 10 0
6 11 0
6 12 0
6 13 0
6 14 0
6 15 0
6 16 0
6 17 0
6 18 0
6 19 0
6 20 0
6 21 -0
6 22 -0
6 23 1.71481e-17
6 24 1.45456e-14
6 25 3.68424e-12
6 26 0.0372893
6 27 0
6 28 0
6 29 0
6 30 0
6 31 0
6 32 0
6 33 0
6 34 0
6 35 0
6 36 0
6 37 0
6 38 0
6 39 0
7 0 0
7 1 0
7 2 0
7 3 -1.70708e-18
7 4 -1.83305e-15
7 5 -6.00238e-13
7 6 0.00672192
7 7 -1.04492
7 8 0.0153351
7 9 0
7 10 0
7 11 0
7 12 0
7 13 0
7 14 0
7 15 0
7 16 0
7 17 0
7 18 0
7 19 0
7 20 0
7 21 -0
7 22 -0
7 23 9.25614e-18
7 24 7.85134e-15
7 25 1.98866e-12
7 26 1.98825e-10
7 27 0.0372893
7 28 0
7 29 0
7 30 0
7 31 0
7 32 0
7 33 0
7 34 0
7 35 0
7 36 0
7 37 0
7 38 0
7 39 0
8 0 0
8 1 0
8 2 0
8 3 -1.00066e-18
8 4 -1.0745e-15
8 5 -3.51849e-13
8 6 -4.60609e-11
8 7 0.0124532
8 8 -1.06006
8 9 0.0245639
8 10 0
8 11 0
8 12 0
8 13 0
8 14 0
8 15 0
8 16 0
8 17 0
8 18 0
8 19 0
8 20 0
8 21 -0
8 22 -0
8 23 5.42578e-18
8 24 4.60231e-15
8 25 1.16572e-12
8 26 1.16548e-10
8 27 5.44139e-09
8 28 0.0372894
8 29 0
8 30 0
8 31 0
8 32 0
8 33 0
8 34 0
8 35 0
8 36 0
8 37 0
8 38 0
8 39 0
9 0 0
9 1 0
9 2 0
9 3 -6.24705e-19
9 4 -6.70805e-16
9 5 -2.19657e-13
9 6 -2.87556e-11
9 7 -1.77069e-09
9 8 0.0212445
9 9 -1.08207
9 10 0.0374392
9 11 0
9 12 0
9 13 0
9 14 0
9 15 0
9 16 0
9 17 0
9 18 0
9 19 0
9 20 0
9 21 -0
9 22 -0
9 23 3.38729e-18
9 24 2.8732e-15
9 25 7.27751e-13
9 26 7.276e-11
9 27 3.39704e-09
9 28 8.35962e-08
9 29 0.0372897
9 30 0
9 31 0
9 32 0
9 33 0
9 34 0
9 35 0
9 36 0
9 37 0
9 38 0
9 39 0
10 0 0
10 1 0
10 2 0
10 3 -4.09869e-19
10 4 -4.40115e-16
10 5 -1.44117e-13
10 6 -1.88665e-11
10 7 -1.16175e-09
10 8 -3.77287e-08
10 9 0.034029
10 10 -1.11279
10 11 0.0548147
10 12 0
10 13 0
10 14 0
10 15 0
10 16 0
10 17 0
10 18 0
10 19 0
10 20 0
10 21 -0
10 22 -0
10 23 2.2224e-18
10 24 1.88511e-15
10 25 4.77477e-13
10 26 4.77379e-11
10 27 2.22879e-09
10 28 5.48475e-08
10 29 7.81768e-07
10 30 0.0372906
10 31 0
10 32 0
10 33 0
10 34 0
10 35 0
10 36 0
10 37 0
10 38 0
10 39 0
11 0 0
11 1 0
11 2 0
11 3 -2.79946e-19
11 4 -3.00605e-16
11 5 -9.8434e-14
11 6 -1.28861e-11
11 7 -7.93491e-10
11 8 -2.57692e-08
11 9 -4.81525e-07
11 10 0.0518611
11 11 -1.15423
11 12 0.0776334
11 13 0
11 14 0
11 15 0
11 16 0
11 17 0
11 18 0
11 19 0
11 20 0
11 21 -0
11 22 -0
11 23 1.51793e-18
11 24 1.28755e-15
11 25 3.26123e-13
11 26 3.26056e-11
11 27 1.5223e-09
11 28 3.74616e-08
11 29 5.33958e-07
11 30 4.76284e-06
11 31 0.0372904
11 32 0
11 33 0
11 34 0
11 35 0
11 36 0
11 37 0
11 38 0
11 39 0
12 0 0
12 1 0
12 2 0
12 3 -1.9766e-19
12 4 -2.12247e-16
12 5 -6.9501e-14
12 6 -9.09844e-12
12 7 -5.60258e-10
12 8 -1.81948e-08
12 9 -3.39989e-07
12 10 -3.92299e-06
12 11 0.0759084
12 12 -1.2086
12 13 0.106927
12 14 0
12 15 0
12 16 0
12 17 0
12 18 0
12 19 0
12 20 0
12 21 -0
12 22 -0
12 23 1.07176e-18
12 24 9.09098e-16
12 25 2.30265e-13
12 26 2.30217e-11
12 27 1.07484e-09
12 28 2.64504e-08
12 29 3.7701e-07
12 30 3.36288e-06
12 31 2.00372e-05
12 32 0.037277
12 33 0
12 34 0
12 35 0
12 36 0
12 37 0
12 38 0
12 39 0
13 0 0
13 1 0
13 2 0
13 3 -1.43506e-19
13 4 -1.54097e-16
13 5 -5.04594e-14
13 6 -6.6057e-12
13 7 -4.06761e-10
13 8 -1.32099e-08
13 9 -2.46841e-07
13 10 -2.84819e-06
13 11 -2.15508e-05
13 12 0.107439
13 13 -1.27818
13 14 0.143816
13 15 0
13 16 0
13 17 0
13 18 0
13 19 0
13 20 0
13 21 -0
13 22 -0
13 23 7.78124e-19
13 24 6.60028e-16
13 25 1.67178e-13
13 26 1.67144e-11
13 27 7.80363e-10
13 28 1.92036e-08
13 29 2.73719e-07
13 30 2.44154e-06
13 31 1.45475e-05
13 32 6.12057e-05
13 33 0.0372164
13 34 0
13 35 0
13 36 0
13 37 0
13 38 0
13 39 0
14 0 0
14 1 0
14 2 0
14 3 -1.06692e-19
14 4 -1.14566e-16
14 5 -3.75149e-14
14 6 -4.91111e-12
14 7 -3.02413e-10
14 8 -9.8211e-09
14 9 -1.83518e-07
14 10 -2.11753e-06
14 11 -1.60223e-05
14 12 -8.38046e-05
14 13 0.147822
14 14 -1.36532
14 15 0.189504
14 16 0
14 17 0
14 18 0
14 19 0
14 20 0
14 21 -0
14 22 -0
14 23 5.78509e-19
14 24 4.90708e-16
14 25 1.24291e-13
14 26 1.24266e-11
14 27 5.80174e-10
14 28 1.42772e-08
14 29 2.03501e-07
14 30 1.8152e-06
14 31 1.08156e-05
14 32 4.55044e-05
14 33 0.000141738
14 34 0.037054
14 35 0
14 36 0
14 37 0
14 38 0
14 39 0
15 0 0
15 1 0
15 2 0
15 3 -8.09617e-20
15 4 -8.69363e-17
15 5 -2.84676e-14
15 6 -3.72672e-12
15 7 -2.29482e-10
15 8 -7.45259e-09
15 9 -1.3926e-07
15 10 -1.60686e-06
15 11 -1.21583e-05
15 12 -6.35938e-05
15 13 -0.000240978
15 14 0.198572
15 15 -1.47244
15 16 0.245284
15 17 0
15 18 0
15 19 0
15 20 0
15 21 -0
15 22 -0
15 23 4.38992e-19
15 24 3.72367e-16
15 25 9.43165e-14
15 26 9.4297e-12
15 27 4.40256e-10
15 28 1.08341e-08
15 29 1.54423e-07
15 30 1.37744e-06
15 31 8.20722e-06
15 32 3.45303e-05
15 33 0.000107556
15 34 0.00025815
15 35 0.0367414
15 36 0
15 37 0
15 38 0
15 39 0
16 0 0
16 1 0
16 2 0
16 3 -6.2541e-20
16 4 -6.71562e-17
16 5 -2.19905e-14
16 6 -2.8788e-12
16 7 -1.77269e-10
16 8 -5.75695e-09
16 9 -1.07575e-07
16 10 -1.24126e-06
16 11 -9.39196e-06
16 12 -4.91247e-05
16 13 -0.00018615
16 14 -0.000532785
16 15 0.261412
16 16 -1.60237
16 17 0.312534
16 18 0
16 19 0
16 20 0
16 21 -0
16 22 -0
16 23 3.39111e-19
16 24 2.87644e-16
16 25 7.28573e-14
16 26 7.28422e-12
16 27 3.40087e-10
16 28 8.36906e-09
16 29 1.19288e-07
16 30 1.06404e-06
16 31 6.33988e-06
16 32 2.66738e-05
16 33 8.30842e-05
16 34 0.000199415
16 35 0.000380998
16 36 0.0362722
16 37 0
16 38 0
16 39 0
17 0 0
17 1 0
17 2 0
17 3 -4.90737e-20
17 4 -5.26951e-17
17 5 -1.72552e-14
17 6 -2.2589e-12
17 7 -1.39097e-10
17 8 -4.51727e-09
17 9 -8.44101e-08
17 10 -9.73972e-07
17 11 -7.36955e-06
17 12 -3.85465e-05
17 13 -0.000146065
17 14 -0.000418058
17 15 -0.000937622
17 16 0.338289
17 17 -1.75855
17 18 0.392721
17 19 0
17 20 0
17 21 -0
17 22 -0
17 23 2.66089e-19
17 24 2.25704e-16
17 25 5.71685e-14
17 26 5.71567e-12
17 27 2.66854e-10
17 28 6.56691e-09
17 29 9.36014e-08
17 30 8.34912e-07
17 31 4.97468e-06
17 32 2.093e-05
17 33 6.51932e-05
17 34 0.000156474
17 35 0.000298956
17 36 0.000464812
17 37 0.0356987
17 38 0
17 39 0
18 0 0
18 1 0
18 2 0
18 3 -3.9044e-20
18 4 -4.19253e-17
18 5 -1.37286e-14
18 6 -1.79722e-12
18 7 -1.10668e-10
18 8 -3.59403e-09
18 9 -6.71583e-08
18 10 -7.74912e-07
18 11 -5.86336e-06
18 12 -3.06683e-05
18 13 -0.000116213
18 14 -0.000332615
18 15 -0.000745991
18 16 -0.00135408
18 17 0.431311
18 18 -1.94504
18 19 0.487406
18 20 0
18 21 -0
18 22 -0
18 23 2.11705e-19
18 24 1.79575e-16
18 25 4.54844e-14
18 26 4.5475e-12
18 27 2.12315e-10
18 28 5.22476e-09
18 29 7.44712e-08
18 30 6.64273e-07
18 31 3.95796e-06
18 32 1.66524e-05
18 33 5.1869e-05
18 34 0.000124494
18 35 0.000237855
18 36 0.000369814
18 37 0.000468415
18 38 0.0351196
18 39 0
19 0 0
19 1 0
19 2 0
19 3 -3.14507e-20
19 4 -3.37716e-17
19 5 -1.10586e-14
19 6 -1.4477e-12
19 7 -8.91453e-11
19 8 -2.89506e-09
19 9 -5.40973e-08
19 10 -6.24206e-07
19 11 -4.72304e-06
19 12 -2.47039e-05
19 13 -9.36114e-05
19 14 -0.000267928
19 15 -0.000600909
19 16 -0.00109074
19 17 -0.00164864
19 18 0.543712
19 19 -1.70673
19 20 0
19 21 -0
19 22 -0
19 23 1.70533e-19
19 24 1.44651e-16
19 25 3.66386e-14
19 26 3.6631e-12
19 27 1.71023e-10
19 28 4.20864e-09
19 29 5.99879e-08
19 30 5.35084e-07
19 31 3.18821e-06
19 32 1.34138e-05
19 33 4.17815e-05
19 34 0.000100282
19 35 0.000191597
19 36 0.000297892
19 37 0.000377317
19 38 0.000183213
19 39 0.0345669
20 0 0.0170327
20 1 0
20 2 0
20 3 0
20 4 0
20 5 0
20 6 0
20 7 0
20 8 0
20 9 0
20 10 0
20 11 0
20 12 0
20 13 0
20 14 0
20 15 0
20 16 0
20 17 0
20 18 0
20 19 0
20 20 -1.04374
20 21 1.03733e-05
20 22 0
20 23 0
20 24 0
20 25 0
20 26 0
20 27 0
20 28 0
20 29 0
20 30 0
20 31 0
20 32 0
20 33 0
20 34 0
20 35 0
20 36 0
20 37 0
20 38 0
20 39 0
21 0 0
21 1 0.0170327
21 2 0
21 3 0
21 4 0
21 5 0
21 6 0
21 7 0
21 8 0
21 9 0
21 10 0
21 11 0
21 12 0
21 13 0
21 14 0
21 15 0
21 16 0
21 17 0
21 18 0
21 19 0
21 20 0
21 21 -1.04376
21 22 0.000165973
21 23 0
21 24 0
21 25 0
21 26 0
21 27 0
21 28 0
21 29 0
21 30 0
21 31 0
21 32 0
21 33 0
21 34 0
21 35 0
21 36 0
21 37 0
21 38 0
21 39 0
22 0 0
22 1 0
22 2 0.0170327
22 3 0
22 4 0
22 5 0
22 6 0
22 7 0
22 8 0
22 9 0
22 10 0
22 11 0
22 12 0
22 13 0
22 14 0
22 15 0
22 16 0
22 17 0
22 18 0
22 19 0
22 20 0
22 21 7.48396e-06
22 22 -1.04402
22 23 0.00084024
22 24 0
22 25 0
22 26 0
22 27 0
22 28 0
22 29 0
22 30 0
22 31 0
22 32 0
22 33 0
22 34 0
22 35 0
22 36 0
22 37 0
22 38 0
22 39 0
23 0 0
23 1 0
23 2 0
23 3 0.0170327
23 4 0
23 5 0
23 6 0
23 7 0
23 8 0
23 9 0
23 10 0
23 11 0
23 12 0
23 13 0
23 14 0
23 15 0
23 16 0
23 17 0
23 18 0
23 19 0
23 20 0
23 21 0
23 22 0.000119743
23 23 -1.04518
23 24 0.00265557
23 25 0
23 26 0
23 27 0
23 28 0
23 29 0
23 30 0
23 31 0
23 32 0
23 33 0
23 34 0
23 35 0
23 36 0
23 37 0
23 38 0
23 39 0
24 0 0
24 1 0
24 2 0
24 3 1.60105e-17
24 4 0.0170327
24 5 0
24 6 0
24 7 0
24 8 0
24 9 0
24 10 0
24 11 0
24 12 0
24 13 0
24 14 0
24 15 0
24 16 0
24 17 0
24 18 0
24 19 0
24 20 0
24 21 0
24 22 0
24 23 0.000606201
24 24 -1.04831
24 25 0.00648333
24 26 0
24 27 0
24 28 0
24 29 0
24 30 0
24 31 0
24 32 0
24 33 0
24 34 0
24 35 0
24 36 0
24 37 0
24 38 0
24 39 0
25 0 0
25 1 0
25 2 0
25 3 6.5579e-18
25 4 7.04184e-15
25 5 0.0170327
25 6 0
25 7 0
25 8 0
25 9 0
25 10 0
25 11 0
25 12 0
25 13 0
25 14 0
25 15 0
25 16 0
25 17 0
25 18 0
25 19 0
25 20 0
25 21 0
25 22 0
25 23 -3.55584e-17
25 24 0.00191589
25 25 -1.0549
25 26 0.0134438
25 27 0
25 28 0
25 29 0
25 30 0
25 31 0
25 32 0
25 33 0
25 34 0
25 35 0
25 36 0
25 37 0
25 38 0
25 39 0
26 0 0
26 1 0
26 2 0
26 3 3.16257e-18
26 4 3.39595e-15
26 5 1.11202e-12
26 6 0.0170327
26 7 0
26 8 0
26 9 0
26 10 0
26 11 0
26 12 0
26 13 0
26 14 0
26 15 0
26 16 0
26 17 0
26 18 0
26 19 0
26 20 0
26 21 0
26 22 0
26 23 -1.71481e-17
26 24 -1.45456e-14
26 25 0.00467748
26 26 -1.06689
26 27 0.0249064
26 28 0
26 29 0
26 30 0
26 31 0
26 32 0
26 33 0
26 34 0
26 35 0
26 36 0
26 37 0
26 38 0
26 39 0
27 0 0
27 1 0
27 2 0
27 3 1.70708e-18
27 4 1.83305e-15
27 5 6.00238e-13
27 6 7.85778e-11
27 7 0.0170327
27 8 0
27 9 0
27 10 0
27 11 0
27 12 0
27 13 0
27 14 0
27 15 0
27 16 0
27 17 0
27 18 0
27 19 0
27 20 0
27 21 0
27 22 0
27 23 -9.25614e-18
27 24 -7.85134e-15
27 25 -1.98866e-12
27 26 0.00969921
27 27 -1.08662
27 28 0.0424892
27 29 0
27 30 0
27 31 0
27 32 0
27 33 0
27 34 0
27 35 0
27 36 0
27 37 0
27 38 0
27 39 0
28 0 0
28 1 0
28 2 0
28 3 1.00066e-18
28 4 1.0745e-15
28 5 3.51849e-13
28 6 4.60609e-11
28 7 2.83631e-09
28 8 0.0170327
28 9 0
28 10 0
28 11 0
28 12 0
28 13 0
28 14 0
28 15 0
28 16 0
28 17 0
28 18 0
28 19 0
28 20 0
28 21 0
28 22 0
28 23 -5.42578e-18
28 24 -4.60231e-15
28 25 -1.16572e-12
28 26 -1.16548e-10
28 27 0.017969
28 28 -1.1169
28 29 0.0680594
28 30 0
28 31 0
28 32 0
28 33 0
28 34 0
28 35 0
28 36 0
28 37 0
28 38 0
28 39 0
29 0 0
29 1 0
29 2 0
29 3 6.24705e-19
29 4 6.70805e-16
29 5 2.19657e-13
29 6 2.87556e-11
29 7 1.77069e-09
29 8 5.75045e-08
29 9 0.0170331
29 10 0
29 11 0
29 12 0
29 13 0
29 14 0
29 15 0
29 16 0
29 17 0
29 18 0
29 19 0
29 20 0
29 21 0
29 22 0
29 23 -3.38729e-18
29 24 -2.8732e-15
29 25 -7.27751e-13
29 26 -7.276e-11
29 27 -3.39704e-09
29 28 0.0306543
29 29 -1.16092
29 30 0.103733
29 31 0
29 32 0
29 33 0
29 34 0
29 35 0
29 36 0
29 37 0
29 38 0
29 39 0
30 0 0
30 1 0
30 2 0
30 3 4.09869e-19
30 4 4.40115e-16
30 5 1.44117e-13
30 6 1.88665e-11
30 7 1.16175e-09
30 8 3.77287e-08
30 9 7.05001e-07
30 10 0.0170349
30 11 0
30 12 0
30 13 0
30 14 0
30 15 0
30 16 0
30 17 0
30 18 0
30 19 0
30 20 0
30 21 0
30 22 0
30 23 -2.2224e-18
30 24 -1.88511e-15
30 25 -4.77477e-13
30 26 -4.77379e-11
30 27 -2.22879e-09
30 28 -5.48475e-08
30 29 0.0491019
30 30 -1.22235
30 31 0.151876
30 32 0
30 33 0
30 34 0
30 35 0
30 36 0
30 37 0
30 38 0
30 39 0
31 0 0
31 1 0
31 2 0
31 3 2.79946e-19
31 4 3.00605e-16
31 5 9.8434e-14
31 6 1.28861e-11
31 7 7.93491e-10
31 8 2.57692e-08
31 9 4.81525e-07
31 10 5.55612e-06
31 11 0.0170399
31 12 0
31 13 0
31 14 0
31 15 0
31 16 0
31 17 0
31 18 0
31 19 0
31 20 0
31 21 0
31 22 0
31 23 -1.51793e-18
31 24 -1.28755e-15
31 25 -3.26123e-13
31 26 -3.26056e-11
31 27 -1.5223e-09
31 28 -3.74616e-08
31 29 -5.33958e-07
31 30 0.0748372
31 31 -1.30526
31 32 0.215103
31 33 0
31 34 0
31 35 0
31 36 0
31 37 0
31 38 0
31 39 0
32 0 0
32 1 0
32 2 0
32 3 1.9766e-19
32 4 2.12247e-16
32 5 6.9501e-14
32 6 9.09844e-12
32 7 5.60258e-10
32 8 1.81948e-08
32 9 3.39989e-07
32 10 3.92299e-06
32 11 2.96832e-05
32 12 0.0170378
32 13 0
32 14 0
32 15 0
32 16 0
32 17 0
32 18 0
32 19 0
32 20 0
32 21 0
32 22 0
32 23 -1.07176e-18
32 24 -9.09098e-16
32 25 -2.30265e-13
32 26 -2.30217e-11
32 27 -1.07484e-09
32 28 -2.64504e-08
32 29 -3.7701e-07
32 30 -3.36288e-06
32 31 0.109563
32 32 -1.41419
32 33 0.296278
32 34 0
32 35 0
32 36 0
32 37 0
32 38 0
32 39 0
33 0 0
33 1 0
33 2 0
33 3 1.43506e-19
33 4 1.54097e-16
33 5 5.04594e-14
33 6 6.6057e-12
33 7 4.06761e-10
33 8 1.32099e-08
33 9 2.46841e-07
33 10 2.84819e-06
33 11 2.15508e-05
33 12 0.000112721
33 13 0.0169713
33 14 0
33 15 0
33 16 0
33 17 0
33 18 0
33 19 0
33 20 0
33 21 0
33 22 0
33 23 -7.78124e-19
33 24 -6.60028e-16
33 25 -1.67178e-13
33 26 -1.67144e-11
33 27 -7.80363e-10
33 28 -1.92036e-08
33 29 -2.73719e-07
33 30 -2.44154e-06
33 31 -1.45475e-05
33 32 0.155156
33 33 -1.5542
33 34 0.398523
33 35 0
33 36 0
33 37 0
33 38 0
33 39 0
34 0 0
34 1 0
34 2 0
34 3 1.06692e-19
34 4 1.14566e-16
34 5 3.75149e-14
34 6 4.91111e-12
34 7 3.02413e-10
34 8 9.8211e-09
34 9 1.83518e-07
34 10 2.11753e-06
34 11 1.60223e-05
34 12 8.38046e-05
34 13 0.000317564
34 14 0.0166963
34 15 0
34 16 0
34 17 0
34 18 0
34 19 0
34 20 0
34 21 0
34 22 0
34 23 -5.78509e-19
34 24 -4.90708e-16
34 25 -1.24291e-13
34 26 -1.24266e-11
34 27 -5.80174e-10
34 28 -1.42772e-08
34 29 -2.03501e-07
34 30 -1.8152e-06
34 31 -1.08156e-05
34 32 -4.55044e-05
34 33 0.213676
34 34 -1.73091
34 35 0.525213
34 36 0
34 37 0
34 38 0
34 39 0
35 0 0
35 1 0
35 2 0
35 3 8.09617e-20
35 4 8.69363e-17
35 5 2.84676e-14
35 6 3.72672e-12
35 7 2.29482e-10
35 8 7.45259e-09
35 9 1.3926e-07
35 10 1.60686e-06
35 11 1.21583e-05
35 12 6.35938e-05
35 13 0.000240978
35 14 0.000689711
35 15 0.0160027
35 16 0
35 17 0
35 18 0
35 19 0
35 20 0
35 21 0
35 22 0
35 23 -4.38992e-19
35 24 -3.72367e-16
35 25 -9.43165e-14
35 26 -9.4297e-12
35 27 -4.40256e-10
35 28 -1.08341e-08
35 29 -1.54423e-07
35 30 -1.37744e-06
35 31 -8.20722e-06
35 32 -3.45303e-05
35 33 -0.000107556
35 34 0.287364
35 35 -1.95043
35 36 0.679981
35 37 0
35 38 0
35 39 0
36 0 0
36 1 0
36 2 0
36 3 6.2541e-20
36 4 6.71562e-17
36 5 2.19905e-14
36 6 2.8788e-12
36 7 1.77269e-10
36 8 5.75695e-09
36 9 1.07575e-07
36 10 1.24126e-06
36 11 9.39196e-06
36 12 4.91247e-05
36 13 0.00018615
36 14 0.000532785
36 15 0.00119493
36 16 0.014725
36 17 0
36 18 0
36 19 0
36 20 0
36 21 0
36 22 0
36 23 -3.39111e-19
36 24 -2.87644e-16
36 25 -7.28573e-14
36 26 -7.28422e-12
36 27 -3.40087e-10
36 28 -8.36906e-09
36 29 -1.19288e-07
36 30 -1.06404e-06
36 31 -6.33988e-06
36 32 -2.66738e-05
36 33 -8.30842e-05
36 34 -0.000199415
36 35 0.378653
36 36 -2.21916
36 37 0.866716
36 38 0
36 39 0
37 0 0
37 1 0
37 2 0
37 3 4.90737e-20
37 4 5.26951e-17
37 5 1.72552e-14
37 6 2.2589e-12
37 7 1.39097e-10
37 8 4.51727e-09
37 9 8.44101e-08
37 10 9.73972e-07
37 11 7.36955e-06
37 12 3.85465e-05
37 13 0.000146065
37 14 0.000418058
37 15 0.000937622
37 16 0.00170192
37 17 0.0128679
37 18 0
37 19 0
37 20 0
37 21 0
37 22 0
37 23 -2.66089e-19
37 24 -2.25704e-16
37 25 -5.71685e-14
37 26 -5.71567e-12
37 27 -2.66854e-10
37 28 -6.56691e-09
37 29 -9.36014e-08
37 30 -8.34912e-07
37 31 -4.97468e-06
37 32 -2.093e-05
37 33 -6.51932e-05
37 34 -0.000156474
37 35 -0.000298956
37 36 0.490159
37 37 -2.54365
37 38 1.08955
37 39 0
38 0 0
38 1 0
38 2 0
38 3 3.9044e-20
38 4 4.19253e-17
38 5 1.37286e-14
38 6 1.79722e-12
38 7 1.10668e-10
38 8 3.59403e-09
38 9 6.71583e-08
38 10 7.74912e-07
38 11 5.86336e-06
38 12 3.06683e-05
38 13 0.000116213
38 14 0.000332615
38 15 0.000745991
38 16 0.00135408
38 17 0.00204668
38 18 0.0106359
38 19 0
38 20 0
38 21 0
38 22 0
38 23 -2.11705e-19
38 24 -1.79575e-16
38 25 -4.54844e-14
38 26 -4.5475e-12
38 27 -2.12315e-10
38 28 -5.22476e-09
38 29 -7.44712e-08
38 30 -6.64273e-07
38 31 -3.95796e-06
38 32 -1.66524e-05
38 33 -5.1869e-05
38 34 -0.000124494
38 35 -0.000237855
38 36 -0.000369814
38 37 0.624671
38 38 -2.93065
38 39 1.35287
39 0 0
39 1 0
39 2 0
39 3 3.14507e-20
39 4 3.37716e-17
39 5 1.10586e-14
39 6 1.4477e-12
39 7 8.91453e-11
39 8 2.89506e-09
39 9 5.40973e-08
39 10 6.24206e-07
39 11 4.72304e-06
39 12 2.47039e-05
39 13 9.36114e-05
39 14 0.000267928
39 15 0.000600909
39 16 0.00109074
39 17 0.00164864
39 18 0.00106446
39 19 0.00713715
39 20 0
39 21 0
39 22 0
39 23 -1.70533e-19
39 24 -1.44651e-16
39 25 -3.66386e-14
39 26 -3.6631e-12
39 27 -1.71023e-10
39 28 -4.20864e-09
39 29 -5.99879e-08
39 30 -5.35084e-07
39 31 -3.18821e-06
39 32 -1.34138e-05
39 33 -4.17815e-05
39 34 -0.000100282
39 35 -0.000191597
39 36 -0.000297892
39 37 -0.000377317
39 38 0.785244
39 39 -2.41236
\end{filecontents*}
\begin{document}
\begin{tikzpicture}
\begin{axis}[view={0}{90}, xlabel=$i$, ylabel=$j$, colorbar,
y dir = reverse]
\addplot3[surf] file {temp.dat};
\end{axis}
\end{tikzpicture}
\end{document}
我认为问题在于数据集涵盖了多个数量级(从 1 到 1e-20)。是否有可能实现接近 Mathematicas MatrixPlot 的绘图着色?
编辑:
由于设置了从 -10^-8 到 10^-8 的低得多的元值,我至少得到了所需的形式(感谢@Marijn)。
是否有可能改变色彩图对矩阵分量值变化的敏感度以进一步提高分辨率?
编辑2:
我应该提到,我从功能切换addplot3
到addplot
功能matrix plot
,因为表面图存在我不理解的不一致之处。
\begin{tikzpicture}
\begin{axis}[xlabel=$i$, ylabel=$j$, colorbar, y dir = reverse, enlargelimits=false, axis on top,
ymin=-0.5, ymax=39.5, xmin=-0.5, xmax=39.5, ]
\addplot[matrix plot*, point meta min=-1e-8, point meta max=1e-8,
point meta=explicit] file {temp.dat};
\end{axis}
\end{tikzpicture}