当其中一个表格比其他表格长时,垂直对齐 3 个表格

当其中一个表格比其他表格长时,垂直对齐 3 个表格

嘿,我有三张桌子,我把它们放在一起。其中一张桌子比较长,它们没有对齐。有没有办法让它们从同一水平开始。我还想知道是否可以将左边的桌子稍微向左移动一点。

\documentclass[14pt, a4paper, twoside]{report} % 'twoside' when printing
%\setcounter{secnumdepth}{3}
\usepackage[utf8]{inputenc}             
\usepackage[english]{babel}             
\usepackage{geometry}
\usepackage{array}
\usepackage{booktabs}
\usepackage{subcaption} 
\usepackage{tabularx}
\usepackage{floatrow, makecell}%
\setcounter{secnumdepth}{3}
% Center the table horizontally
\newcolumntype{P}[2]{>{\centering\arraybackslash}p{#1}}
% Center the table vertically
\newcolumntype{M}[2]{>{\centering\arraybackslash}m{#1}}
% Center the table horizontally and vertically
\newcolumntype{C}[2]{>{\centering\arraybackslash}m{#1}}

\usepackage{float}
\begin{document}
\chapter{Global Sensitivity Analysis}
 \section{Sensitivity analysis of the Non-dimensional model}
 \subsection{Sobol method}
 \subsubsection{ $x$}

\begin{table}[H]
    \centering
    \begin{subtable}[b]{.22\linewidth}
        \centering
        \begin{tabular}{lrr}
            \toprule
            {} &   $S_{T}$ &  ${S_{T}}_{conf}$ \\
            \midrule
            $\beta_{2}$    &  0.994552 &          0.124695 \\
            $\omega_{22}$  &  0.828068 &          0.107525 \\
            $g_{12}$       &  0.803421 &          0.104188 \\
            $\beta_{1}$    &  0.692074 &          0.096774 \\
            $x_{0}$        &  0.546865 &          0.083055 \\
            $\gamma_{12}$  &  0.509429 &          0.817009 \\
            ${y_{2}}_{0}$  &  0.420421 &          0.068414 \\
            ${y_{1}}_{0}$  &  0.128809 &          0.038012 \\
            $\omega_{11}$  &  0.085175 &          0.030469 \\
            $\epsilon_{2}$ &  0.013422 &          0.011932 \\
            $\epsilon_{1}$ &  0.006910 &          0.008447 \\
            \bottomrule
        \end{tabular}
    \end{subtable}\hfill
    \begin{subtable}[b]{.22\linewidth}
        \centering
        \begin{tabular}{lrr}
            \toprule
            {} &   $S_{1}$ &  ${S_{1}}_{conf}$ \\
            \midrule
            $\beta_{2}$    &  0.072319 &          0.028199 \\
            $g_{12}$       &  0.000922 &          0.007176 \\
            $\gamma_{12}$  &  0.000189 &          0.000836 \\
            $\omega_{11}$  &  0.000126 &          0.001144 \\
            $\epsilon_{1}$ & -0.000105 &          0.000504 \\
            $\epsilon_{2}$ & -0.000113 &          0.000405 \\
            ${y_{2}}_{0}$  & -0.000125 &          0.000836 \\
            ${y_{1}}_{0}$  & -0.000218 &          0.000481 \\
            $\beta_{1}$    & -0.002986 &          0.004480 \\
            $x_{0}$        & -0.003422 &          0.004040 \\
            $\omega_{22}$  & -0.003677 &          0.006299 \\
            \bottomrule
        \end{tabular}
    \end{subtable}\hfill
    \begin{subtable}[b]{.22\linewidth}
        \centering
        \begin{tabular}{lrr}
            \toprule
            {} &   $S_{2}$ &  ${S_{2}}_{conf}$ \\
            \midrule
            ($\beta_{1}$, $\beta_{2}$)       &  0.045929 &          0.038401 \\
            ($\beta_{2}$, $g_{12}$)          &  0.045331 &          0.050504 \\
            ($\beta_{2}$, $\omega_{22}$)     &  0.037668 &          0.044571 \\
            ($\beta_{2}$, $x_{0}$)           &  0.036517 &          0.067326 \\
            ($\beta_{2}$, ${y_{2}}_{0}$)     &  0.026426 &          0.047685 \\
            ($g_{12}$, $\omega_{22}$)        &  0.022492 &          0.023857 \\
            ($\beta_{1}$, $x_{0}$)           &  0.012171 &          0.015839 \\
            ($\beta_{1}$, ${y_{1}}_{0}$)     &  0.011692 &          0.014563 \\
            ($\beta_{1}$, $\epsilon_{2}$)    &  0.010702 &          0.014339 \\
            ($\beta_{1}$, $\omega_{11}$)     &  0.010701 &          0.014433 \\
            ($\beta_{1}$, $\epsilon_{1}$)    &  0.010631 &          0.014380 \\
            ($\beta_{1}$, $\gamma_{12}$)     &  0.010598 &          0.014386 \\
            ($\beta_{1}$, ${y_{2}}_{0}$)     &  0.010195 &          0.014696 \\
            ($\beta_{1}$, $g_{12}$)          &  0.008001 &          0.015855 \\
            ($\omega_{22}$, ${y_{1}}_{0}$)   &  0.007718 &          0.009530 \\
            ($\omega_{22}$, ${y_{2}}_{0}$)   &  0.007267 &          0.009674 \\
            ($\beta_{2}$, $\omega_{11}$)     &  0.007134 &          0.041062 \\
            ($\beta_{1}$, $\omega_{22}$)     &  0.005735 &          0.006284 \\
            ($\omega_{22}$, $x_{0}$)         &  0.005324 &          0.006108 \\
            ($g_{12}$, $x_{0}$)              &  0.004350 &          0.012807 \\
            ($\beta_{2}$, $\gamma_{12}$)     &  0.004098 &          0.039525 \\
            ($g_{12}$, ${y_{2}}_{0}$)        &  0.002973 &          0.011435 \\
            ($\beta_{2}$, $\epsilon_{1}$)    &  0.002349 &          0.039998 \\
            ($\beta_{2}$, $\epsilon_{2}$)    &  0.001779 &          0.039945 \\
            ($\epsilon_{2}$, $\omega_{22}$)  &  0.001720 &          0.003419 \\
            ($x_{0}$, ${y_{1}}_{0}$)         &  0.001067 &          0.001968 \\
            ($\epsilon_{2}$, $g_{12}$)       &  0.001035 &          0.001910 \\
            \bottomrule
        \end{tabular}
    \end{subtable}
    \caption{Sensitivity of Mean value of $x$}
\end{table}

\end{document}
```


答案1

只需[t]为三个表格环境分别指定对齐方式

    \begin{tabular}[t]{lrr}

这会将所有三个顶部规则与封闭行的基线对齐。(我不明白为什么\toprule它不解决这个问题。)由于只有三个表格位于该行上,因此这对本文档来说不是问题。\vspace{-.5\baselineskip}如果您发现那里有太多空白,您可以在开头放置或类似的长度。

js bibra 是正确的,使用给定的布局参数和字体大小的页面来说表格太长了。

我不知道子表环境有什么用处,但我认为它们对于“真实”文档很有用。

答案2

您可以更改脚注大小,但它不适合同一页上的表格

表格列分隔符可根据需要调整

中尺厚度可调节 在此处输入图片描述

\documentclass[14pt, a4paper, twoside]{report} % 'twoside' when printing
%\setcounter{secnumdepth}{3}
\usepackage[utf8]{inputenc}             
\usepackage[english]{babel}             
\usepackage{geometry}
\usepackage{array}
\usepackage{booktabs}
\usepackage{subcaption} 
\usepackage{tabularx}
\usepackage{floatrow, makecell}%
\setcounter{secnumdepth}{3}
% Center the table horizontally
\newcolumntype{P}[2]{>{\centering\arraybackslash}p{#1}}
% Center the table vertically
\newcolumntype{M}[2]{>{\centering\arraybackslash}m{#1}}
% Center the table horizontally and vertically
\newcolumntype{C}[2]{>{\centering\arraybackslash}m{#1}}

\usepackage{float}
\begin{document}
\chapter{Global Sensitivity Analysis}
 \section{Sensitivity analysis of the Non-dimensional model}
 \subsection{Sobol method}
 \subsubsection{ $x$}

\begin{table}[!htb]
    \footnotesize\setlength{\tabcolsep}{4pt}
    \begin{minipage}{.3\linewidth}
    \centering

        \begin{tabular}{lrr}
            \toprule
            {} &   $S_{T}$ &  ${S_{T}}_{conf}$ \\
            \midrule
            $\beta_{2}$    &  0.994552 &          0.124695 \\
            $\omega_{22}$  &  0.828068 &          0.107525 \\
            $g_{12}$       &  0.803421 &          0.104188 \\
            $\beta_{1}$    &  0.692074 &          0.096774 \\
            $x_{0}$        &  0.546865 &          0.083055 \\
            $\gamma_{12}$  &  0.509429 &          0.817009 \\
            ${y_{2}}_{0}$  &  0.420421 &          0.068414 \\
            ${y_{1}}_{0}$  &  0.128809 &          0.038012 \\
            $\omega_{11}$  &  0.085175 &          0.030469 \\
            $\epsilon_{2}$ &  0.013422 &          0.011932 \\
            $\epsilon_{1}$ &  0.006910 &          0.008447 \\ \midrule[2pt]
            &&\\
            &&\\
            &&\\
            &&\\
            &&\\
            &&\\
            &&\\
            &&\\
            &&\\
            &&\\
            &&\\
            &&\\
            &&\\
            &&\\
            &&\\
            &&\\


        \end{tabular}
   \end{minipage}\hfill
   \begin{minipage}{.3\linewidth}
        \centering
        \begin{tabular}{lrr}
            \toprule
            {} &   $S_{1}$ &  ${S_{1}}_{conf}$ \\
            \midrule
            $\beta_{2}$    &  0.072319 &          0.028199 \\
            $g_{12}$       &  0.000922 &          0.007176 \\
            $\gamma_{12}$  &  0.000189 &          0.000836 \\
            $\omega_{11}$  &  0.000126 &          0.001144 \\
            $\epsilon_{1}$ & -0.000105 &          0.000504 \\
            $\epsilon_{2}$ & -0.000113 &          0.000405 \\
            ${y_{2}}_{0}$  & -0.000125 &          0.000836 \\
            ${y_{1}}_{0}$  & -0.000218 &          0.000481 \\
            $\beta_{1}$    & -0.002986 &          0.004480 \\
            $x_{0}$        & -0.003422 &          0.004040 \\
            $\omega_{22}$  & -0.003677 &          0.006299 \\ \midrule[2pt]
            &&\\
            &&\\
            &&\\
            &&\\
            &&\\
            &&\\
            &&\\
            &&\\
            &&\\
            &&\\
            &&\\
            &&\\
            &&\\
            &&\\
            &&\\
            &&\\


        \end{tabular}
    \end{minipage} \hfill
    \begin{minipage}{.3\linewidth}
        \centering
        \begin{tabular}{lrr}
            \toprule
            {} &   $S_{2}$ &  ${S_{2}}_{conf}$ \\
            \midrule
            ($\beta_{1}$, $\beta_{2}$)       &  0.045929 &          0.038401 \\
            ($\beta_{2}$, $g_{12}$)          &  0.045331 &          0.050504 \\
            ($\beta_{2}$, $\omega_{22}$)     &  0.037668 &          0.044571 \\
            ($\beta_{2}$, $x_{0}$)           &  0.036517 &          0.067326 \\
            ($\beta_{2}$, ${y_{2}}_{0}$)     &  0.026426 &          0.047685 \\
            ($g_{12}$, $\omega_{22}$)        &  0.022492 &          0.023857 \\
            ($\beta_{1}$, $x_{0}$)           &  0.012171 &          0.015839 \\
            ($\beta_{1}$, ${y_{1}}_{0}$)     &  0.011692 &          0.014563 \\
            ($\beta_{1}$, $\epsilon_{2}$)    &  0.010702 &          0.014339 \\
            ($\beta_{1}$, $\omega_{11}$)     &  0.010701 &          0.014433 \\
            ($\beta_{1}$, $\epsilon_{1}$)    &  0.010631 &          0.014380 \\
            ($\beta_{1}$, $\gamma_{12}$)     &  0.010598 &          0.014386 \\
            ($\beta_{1}$, ${y_{2}}_{0}$)     &  0.010195 &          0.014696 \\
            ($\beta_{1}$, $g_{12}$)          &  0.008001 &          0.015855 \\
            ($\omega_{22}$, ${y_{1}}_{0}$)   &  0.007718 &          0.009530 \\
            ($\omega_{22}$, ${y_{2}}_{0}$)   &  0.007267 &          0.009674 \\
            ($\beta_{2}$, $\omega_{11}$)     &  0.007134 &          0.041062 \\
            ($\beta_{1}$, $\omega_{22}$)     &  0.005735 &          0.006284 \\
            ($\omega_{22}$, $x_{0}$)         &  0.005324 &          0.006108 \\
            ($g_{12}$, $x_{0}$)              &  0.004350 &          0.012807 \\
            ($\beta_{2}$, $\gamma_{12}$)     &  0.004098 &          0.039525 \\
            ($g_{12}$, ${y_{2}}_{0}$)        &  0.002973 &          0.011435 \\
            ($\beta_{2}$, $\epsilon_{1}$)    &  0.002349 &          0.039998 \\
            ($\beta_{2}$, $\epsilon_{2}$)    &  0.001779 &          0.039945 \\
            ($\epsilon_{2}$, $\omega_{22}$)  &  0.001720 &          0.003419 \\
            ($x_{0}$, ${y_{1}}_{0}$)         &  0.001067 &          0.001968 \\
            ($\epsilon_{2}$, $g_{12}$)       &  0.001035 &          0.001910 \\
            \bottomrule
        \end{tabular}
     \end{minipage} 
    \caption{Sensitivity of Mean value of $x$}
\end{table}

\end{document}

相关内容